首页> 外文期刊>Journal of Optimization Theory and Applications >Uniform Approximation by the Highest Defect Continuous Polynomial Splines: Necessary and Sufficient Optimality Conditions and Their Generalisations
【24h】

Uniform Approximation by the Highest Defect Continuous Polynomial Splines: Necessary and Sufficient Optimality Conditions and Their Generalisations

机译:最高缺陷连续多项式样条的均匀逼近:必要和充分的最优性条件及其推广

获取原文
获取原文并翻译 | 示例

摘要

In this paper necessary and sufficient optimality conditions for uniform approximation of continuous functions by polynomial splines with fixed knots are derived. The obtained results are generalisations of the existing results obtained for polynomial approximation and polynomial spline approximation. The main result is two-fold. First, the generalisation of the existing results to the case when the degree of the polynomials, which compose polynomial splines, can vary from one subinterval to another. Second, the construction of necessary and sufficient optimality conditions for polynomial spline approximation with fixed values of the splines at one or both borders of the corresponding approximation interval.
机译:本文推导了具有固定结的多项式样条均匀逼近连续函数的充要条件。所得结果是对多项式逼近和多项式样条逼近获得的现有结果的概括。主要结果是两个方面。首先,将现有结果推广到组成多项式样条的多项式的阶数可以从一个子区间到另一个子区间变化的情况。第二,构造在相应近似区间的一个或两个边界处具有固定样条值的多项式样条近似的必要和充分的最优条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号