首页> 外文期刊>Journal of network and computer applications >DA-DRLS: Drift adaptive deep reinforcement learning based scheduling for IoT resource management
【24h】

DA-DRLS: Drift adaptive deep reinforcement learning based scheduling for IoT resource management

机译:DA-DRLS:基于漂移自适应深度强化学习的物联网资源管理调度

获取原文
获取原文并翻译 | 示例

摘要

In order to fulfill the tremendous resource demand by diverse IoT applications, the large-scale resource-constrained IoT ecosystem requires a robust resource management technique. An optimal resource provisioning in IoT ecosystem deals with an efficient request-resource mapping which is difficult to achieve due to the heterogeneity and dynamicity of IoT resources and IoT requests. In this paper, we investigate the scheduling and resource allocation problem for dynamic user requests with varying resource requirements. Specifically, we formulate the complete problem as an optimization problem and try to generate an optimal policy with the objectives to minimize the overall energy consumption and to achieve a long-term user satisfaction through minimum response time. We introduce the paradigm of a deep reinforcement learning (DRL) mechanism to escalate the resource management efficiency in IoT ecosystem. To maximize the numerical performance of the entire resource management activities, our method learns to select the optimal resource allocation policy among a number of possible solutions. Moreover, the proposed approach can efficiently handle a sudden hike or fall in users' demand, which we call demand drift, through adaptive learning maintaining the optimal resource utilization. Finally, our simulation analysis illustrates the effectiveness of the proposed mechanism as it achieves substantial improvements in various factors, like reducing energy consumption and response time by at least 36.7% and 59.7% respectively and increasing average resource utilization by at least 10.4%. Our approach also attains a good convergence and a trade-off between the monitoring metrics.
机译:为了满足各种物联网应用的巨大资源需求,大规模的资源受限的物联网生态系统需要强大的资源管理技术。物联网生态系统中的最佳资源配置可处理有效的请求-资源映射,由于物联网资源和物联网请求的异质性和动态性,因此难以实现。在本文中,我们研究了具有不同资源需求的动态用户请求的调度和资源分配问题。具体来说,我们将完整的问题表述为优化问题,并尝试生成一个优化策略,其目标是最大程度地减少总能耗,并通过最短的响应时间获得长期的用户满意度。我们介绍了深度强化学习(DRL)机制的范例,以提升物联网生态系统中的资源管理效率。为了使整个资源管理活动的数值性能最大化,我们的方法将学习在众多可能的解决方案中选择最佳的资源分配策略。而且,通过保持最佳资源利用的自适应学习,所提出的方法可以有效地处理用户需求的突然上升或下降,我们称之为需求漂移。最后,我们的仿真分析说明了该机制的有效性,因为该机制在各种因素上均取得了实质性的改进,例如分别减少了能耗和响应时间至少分别为36.7%和59.7%,并且将平均资源利用率提高了至少10.4%。我们的方法还可以实现良好的融合,并且可以在监视指标之间进行权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号