首页> 外文期刊>IEEE Transactions on Computers >A3C-DO: A Regional Resource Scheduling Framework Based on Deep Reinforcement Learning in Edge Scenario
【24h】

A3C-DO: A Regional Resource Scheduling Framework Based on Deep Reinforcement Learning in Edge Scenario

机译:A3C-DO:基于边缘方案深增强学习的区域资源调度框架

获取原文
获取原文并翻译 | 示例

摘要

Currently, huge amounts of data are produced by edge device. Considering the heavy burden of network bandwidth and the service delay requirements of delay-sensitive applications, processing the data at network edge is a great choice. However, edge devices such as smart wearables, connected and autonomous vehicles usually have several limitations on computational capacity and energy which will influence the quality of service. As an effective and efficient strategy, offloading is widely used to address this issue. But when facing device heterogeneity problem and task complexity increase, service quality degradation and resource utility decrease often occur due to unreasonable task distribution. Since conventional simplex offloading strategies show limited performance in complex environment, we are motivated to design a dynamic regional resource scheduling framework which is able to work effectively taking different indexes into consideration. Thus, in this article we first propose a double offloading framework to simulate the offloading process in real edge scenario which consists of different edge servers and devices. Then we formulate the offloading as a Markov Decision Process (MDP) and utilize a deep reinforcement learning (DRL) algorithm named asynchronous advantage actor-critic (A3C) as the offloading decision making strategy to balance the workload of edge servers and finally reduce the overhead in terms of energy and time. Comparison experiments for local computing and wide-used DRL algorithm DQN are conducted in a comprehensive benchmark and the results show that our work performs much better on self-adjusting and overhead reduction.
机译:目前,边缘设备产生了大量数据。考虑到网络带宽的沉重负担和延迟敏感应用的服务延迟要求,在网络边缘处理数据是一个很好的选择。然而,诸如智能可穿戴设备,连接和自主车辆的边缘设备通常对计算能力和能量有几个限制,这将影响服务质量。作为一种有效且有效的策略,卸载广泛用于解决这个问题。但是,当面对设备异质性问题和任务复杂性增加时,由于不合理的任务分布,经常发生服务质量退化和资源实用性。由于传统的单纯性卸载策略在复杂环境中表现出有限的性能,因此有动力设计一种动态区域资源调度框架,能够考虑有效地采用不同的指标。因此,在本文中,我们首先提出了一个双重卸载框架,以模拟实际边缘方案中的卸载过程,该过程包括不同的边缘服务器和设备。然后我们将卸载作为马尔可夫决策过程(MDP),并利用名为异步优势的深度增强学习(DRL)算法作为卸载决策策略来平衡边缘服务器的工作量,最后减少开销。在能量和时间方面。本地计算和广泛使用的DRL算法DQN的比较实验在全面的基准中进行,结果表明,我们的工作在自调节和超减少时表现得更好。

著录项

  • 来源
    《IEEE Transactions on Computers》 |2021年第2期|228-239|共12页
  • 作者单位

    Huazhong Univ Sci & Technol Serv Comp Technol & Syst Lab Big Data Technol & Syst Lab Natl Engn Res Ctr Cluster & GridComp Lab Sch Comp Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Serv Comp Technol & Syst Lab Big Data Technol & Syst Lab Natl Engn Res Ctr Cluster & GridComp Lab Sch Comp Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Serv Comp Technol & Syst Lab Big Data Technol & Syst Lab Natl Engn Res Ctr Cluster & GridComp Lab Sch Comp Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Serv Comp Technol & Syst Lab Big Data Technol & Syst Lab Natl Engn Res Ctr Cluster & GridComp Lab Sch Comp Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Edge computing; resource scheduling; computation offloading; deep reinforcement learning; wireless communication;

    机译:边缘计算;资源调度;计算卸载;深增强学习;无线通信;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号