首页> 外文期刊>Journal of network and computer applications >An ensemble learning based approach for impression fraud detection in mobile advertising
【24h】

An ensemble learning based approach for impression fraud detection in mobile advertising

机译:基于整体学习的移动广告印象欺诈检测方法

获取原文
获取原文并翻译 | 示例

摘要

Mobile advertising enjoys 51% share of the whole digital market nowadays. The advertising ecosystem faces a major threat from ad frauds caused by false display requests or clicks, generated by malicious codes, bot-nets, click-firms etc. Around 30% revenue is being wasted due to frauds. Ad frauds in web advertising have been studied extensively, however frauds in mobile advertising have received little attention. Studies have been conducted to detect fraudulent clicks in web and mobile advertisement. However, detection of individual fraudulent display in mobile advertising is yet to be explored to the best of our knowledge. We have proposed an ensemble based method to classify each individual ad display, also called an impression, as fraudulent or non-fraudulent. Our solution achieves as high as 99.32% accuracy, 96.29% precision and 84.75% recall using real datasets from an European commercial ad server. We have proposed some new features and analyzed their contribution using standard techniques. We have also designed a new mechanism to offer flexibility of tolerance to different ad servers in deciding whether an ad display is fraudulent or not.
机译:如今,移动广告在整个数字市场中占有51%的份额。广告生态系统面临着由恶意代码,僵尸网络,点击确认等产生的虚假显示请求或点击导致的广告欺诈的主要威胁。由于欺诈,浪费了大约30%的收入。网络广告中的广告欺诈已得到广泛研究,但是移动广告中的欺诈很少受到关注。已经进行了研究以检测网络和移动广告中的欺诈性点击。但是,就我们所知,尚未探究在移动广告中检测单个欺诈性展示的情况。我们提出了一种基于整体的方法来将每个广告展示(也称为印象)分类为欺诈性或非欺诈性。我们的解决方案使用来自欧洲商业广告服务器的真实数据集,可实现高达99.32%的精度,96.29%的精度和84.75%的召回率。我们提出了一些新功能,并使用标准技术分析了它们的贡献。我们还设计了一种新的机制,可以为不同的广告服务器提供容忍度的灵活性,以确定广告显示是否为欺诈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号