首页> 外文期刊>Journal of network and computer applications >FUIR: Fusing user and item information to deal with data sparsity by using side information in recommendation systems
【24h】

FUIR: Fusing user and item information to deal with data sparsity by using side information in recommendation systems

机译:FUIR:通过在推荐系统中使用辅助信息来融合用户和项目信息以处理数据稀疏性

获取原文
获取原文并翻译 | 示例

摘要

Abstract Recommendation systems adopt various techniques to recommend ranked lists of items to help users in identifying items that fit their personal tastes best. Among various recommendation algorithms, user and item-based collaborative filtering methods have been very successful in both industry and academia. More recently, the rapid growth of the Internet and E-commerce applications results in great challenges for recommendation systems as the number of users and the amount of available online information have been growing too fast. These challenges include performing high quality recommendations per second for millions of users and items, achieving high coverage under the circumstance of data sparsity and increasing the scalability of recommendation systems. To obtain higher quality recommendations under the circumstance of data sparsity, in this paper, we propose a novel method to compute the similarity of different users based on the side information which is beyond user-item rating information from various online recommendation and review sites. Furthermore, we take the special interests of users into consideration and combine three types of information (users, items, user-items) to predict the ratings of items. Then FUIR, a novel recommendation algorithm which fuses user and item information, is proposed to generate recommendation results for target users. We evaluate our proposed FUIR algorithm on three data sets and the experimental results demonstrate that our FUIR algorithm is effective against sparse rating data and can produce higher quality recommendations.
机译: 摘要 推荐系统采用各种技术来推荐商品的排名列表,以帮助用户确定最适合其个人口味的商品。在各种推荐算法中,基于用户和项的协作过滤方法在行业和学术界都非常成功。最近,由于用户数量和可用在线信息数量增长过快,Internet和电子商务应用程序的快速增长给推荐系统带来了巨大挑战。这些挑战包括每秒为数百万个用户和项目执行高质量的建议,在数据稀疏的情况下实现高覆盖率,并提高建议系统的可伸缩性。为了在数据稀疏的情况下获得更高质量的推荐,本文提出了一种新颖的方法,该方法可以基于边信息来计算不同用户的相似度,这些边信息超出了来自各种在线推荐和评论站点的用户项目评分信息。此外,我们考虑到用户的特殊兴趣,并结合三种类型的信息(用户,项目,用户项目)来预测项目的等级。然后提出了融合用户信息和商品信息的新型推荐算法FUIR,为目标用户生成推荐结果。我们在三个数据集上评估了我们提出的FUIR算法,实验结果表明我们的FUIR算法可有效地处理稀疏评级数据,并可以提供更高质量的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号