首页> 外文期刊>Journal of network and computer applications >Novel relay node placement algorithms for establishing connected topologies
【24h】

Novel relay node placement algorithms for establishing connected topologies

机译:用于建立连接拓扑的新型中继节点放置算法

获取原文
获取原文并翻译 | 示例

摘要

Abstract This paper addresses the problem of placing the least number of fixed-range relay nodes (RNs) in order to establish multi-hop paths between every pair of terminals. We derive an optimal solution for the case of three terminals and for the cases of more than 3 terminals, we present three novel heuristics, namely, Optimized Triangle Selection based on Minimum Spanning Tree Triangulation (OTS-MST), Incremental Optimization based on Delaunay Triangulation (IO-DT) and hybrid approach. These heuristics take advantage of the optimal three-terminal based solution by forming connected sub-graphs for steinerized sets of three terminals and then connecting these sub-graphs via steinerized edges. OTS-MST considers triangles that have two mst edges and picks the subset of these triangles which provides the highest reduction in the total number of required RNs as compared to a solution that is based on steinerized mst edges. IO-DT calculates the Delaunay triangulation of terminals and iterates over the formed triangles. In each iteration, the algorithm steinerizes a triangle as part of the final topology if selecting such a triangle reduces the RN count. Finally we consider a hybrid approach, which combines the strengths of OTS-MST and IO-DT. The performance of the proposed algorithms is validated through simulation.
机译: 摘要 本文解决了放置最少数量的固定范围中继节点(RN)以便在每对终端之间建立多跳路径的问题。我们针对三个终端的情况和三个以上终端的情况得出了一个最佳解决方案,我们提出了三种新颖的启发式方法,即基于最小生成树三角剖分的优化三角形选择(OTS-MST),基于Delaunay三角剖分的增量优化(IO-DT)和混合方法。这些启发式方法利用了基于最优三端的解决方案,方法是为三个终端的组合化后的图形成连接的子图,然后通过组合化的边来连接这些子图。 OTS-MST考虑了具有两个最短边的三角形,并选择了这些三角形的子集,这与基于标准化的最短边的解决方案相比,可以最大程度地减少所需RN的总数。 IO-DT计算终端的Delaunay三角剖分,并在形成的三角形上进行迭代。在每次迭代中,如果选择这样的三角形会减少RN计数,则该算法会将三角形作为最终拓扑的一部分。最后,我们考虑一种混合方法,该方法结合了OTS-MST和IO-DT的优势。通过仿真验证了所提算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号