首页> 外文期刊>Journal of network and computer applications >Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks
【24h】

Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks

机译:无线传感器网络中基于改进元启发式的高效节能集群协议

获取原文
获取原文并翻译 | 示例

摘要

Energy efficient clustering is a well accepted NP-hard optimization problem in Wireless sensor networks (WSNs). Diverse paradigm of Computational intelligence (CI) including Evolutionary algorithms (EAs), Reinforcement learning (RL), Artificial immune systems (AIS), and more recently, Artificial bee colony (ABC) metaheuristic have been used for energy efficient clustering in WSNs. Due to ease of use and adaptive nature, ABC arose much interest over other population-based metaheuristics for solving optimization problems in WSNs. However, its search equation, which is comparably poor at exploitation and require storage of certain control parameters, contributes to its insufficiency. Thus, we present an improved Artificial bee colony (iABC) metaheuristic with an improved solution search equation to improve its exploitation capabilities. Additionally, in order to increase the global convergence of the proposed metaheuristic, an improved population sampling technique is introduced through Student's - t distribution, which require only one control parameter to compute and store, hence increase efficiency of proposed metaheuristic. The proposed metaheuristic maintain a good balance between exploration and exploitation search abilities with least memory requirements, moreover the use of first of its kind compact Student's t distribution, make it suitable for limited hardware requirements of WSNs. Further, an energy efficient clustering protocol based on iABC metaheuristic is introduced, which inherit the capabilities of the proposed metaheuristic to obtain optimal cluster heads (CHs) and improve energy efficiency in WSNs. Simulation results shows that the proposed clustering protocol outperforms other well known protocols on the basis of packet delivery, throughput, energy consumption, network lifetime and latency as performance metric.
机译:节能集群是无线传感器网络(WSN)中公认的NP难题。计算智能(CI)的多样化范例包括进化算法(EA),强化学习(RL),人工免疫系统(AIS),最近,人工蜂群(ABC)元启发式技术已用于WSN中的节能聚类。由于易于使用和适应性强,ABC在解决无线传感器网络中的优化问题方面引起了人们的兴趣,超过了其他基于人口的元启发式算法。然而,其搜索方程式在开发上相对较差并且需要存储某些控制参数,这导致其功能不足。因此,我们提出了一种改进的人工蜂群(iABC)与改进的解决方案搜索方程式,以提高其开发能力。另外,为了增加所提出的元启发式方法的全局收敛性,通过学生的-t分布引入了一种改进的总体采样技术,该技术仅需要一个控制参数来进行计算和存储,从而提高了所提出的元启发式方法的效率。所提出的元启发式方法在具有最少内存需求的探索和开发搜索能力之间保持了良好的平衡,而且使用了首个紧凑型Student t分布,使其适合于WSN的有限硬件需求。此外,引入了一种基于iABC元启发式的高效节能聚类协议,该协议继承了所提出的元启发式方法的功能,以获得最优的簇头(CH)并提高WSN中的能源效率。仿真结果表明,基于分组传递,吞吐量,能耗,网络寿命和等待时间等性能指标,所提出的集群协议优于其他协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号