首页> 外文期刊>Journal of multiple-valued logic and soft computing >GF(4) Based Synthesis of Quaternary Reversible/Quantum Logic Circuits
【24h】

GF(4) Based Synthesis of Quaternary Reversible/Quantum Logic Circuits

机译:基于GF(4)的四元可逆/量子逻辑电路综合

获取原文
获取原文并翻译 | 示例

摘要

Galois field sum of products (GFSOP) has been found to be very promising for reversible/quantum implementation of multiple-valued logic. In this paper, we show nine quaternary Galois field expansions, using which quaternary Galois field decision diagrams (QGFDD) can be constructed. Flattening of the QGFDD generates quaternary GFSOP (QGFSOP). These QGFSOP can be implemented as cascade of quaternary 1-qudit gates and multi-qudit Feynman and Toffoli gates. We also show the realization of quaternary Feynman and Toffoli gates using liquid ion-trap realizable 1-qudit gates and 2-qudit Muthukrishnan-Stroud gates. Besides the quaternary functions, this approach can also be used for synthesis of encoded binary functions by grouping 2-bits together into quaternary value. For this purpose, we show binary-to-quaternary encoder and quaternary-to-binary decoder circuits using quaternary 1-qudit gates and 2-qudit Muthukrishnan-Stroud gates.
机译:已发现伽罗瓦乘积领域和(GFSOP)对于多值逻辑的可逆/量子实现非常有希望。在本文中,我们展示了九个四元Galois场扩展,利用它们可以构建四元Galois场决策图(QGFDD)。 QGFDD的展平会生成四元GFSOP(QGFSOP)。这些QGFSOP可以实现为四级1量子门和多量子Feynman和Toffoli栅的级联。我们还展示了使用液体离子阱可实现的1-qudit门和2-qudit Muthukrishnan-Stroud门实现四级Feynman门和Toffoli门。除四元函数外,该方法还可将2位组合为四元值,从而用于编码二进制函数的合成。为了这个目的,我们展示了使用四进制的1数量级门和2数量的Muthukrishnan-Stroud门的二进制到四进制编码器和四进制到二进制解码器电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号