首页> 外文学位 >Theory, Synthesis, and Application of Adiabatic and Reversible Logic Circuits For Security Applications.
【24h】

Theory, Synthesis, and Application of Adiabatic and Reversible Logic Circuits For Security Applications.

机译:用于安全应用的绝热和可逆逻辑电路的理论,合成和应用。

获取原文
获取原文并翻译 | 示例

摘要

Programmable reversible logic is emerging as a prospective logic design style for implementation in modern nanotechnology and quantum computing with minimal impact on circuit heat generation. Adiabatic logic is a design methodology for reversible logic in CMOS where the current flow through the circuit is controlled such that the energy dissipation due to switching and capacitor dissipation is minimized. Recent advances in reversible logic using and quantum computer algorithms allow for improved computer architectures. Production of cost-effective Secure Integrated Chips, such as Smart Cards, requires hardware designers to consider tradeoffs in size, security, and power consumption. In order to design successful security-centric designs, the low-level hardware must contain built-in protection mechanisms to supplement cryptographic algorithms such as AES and Triple DES by preventing side channel attacks, such as Differential Power Analysis (DPA). Dynamic logic obfuscates the output waveforms and the circuit operation, reducing the effectiveness of the DPA attack. Significant research exists in the design and analysis of locally optimal adiabatic elements towards mitigation of side channel attacks. However, none of these works have addressed the use of adiabatic logic in implementation of flexible and programmable hardware security policies. Nor has adiabatic logic been employed in hardware security applications such as trustworthy voting systems and data encryption standards.;In this dissertation, I address theory, synthesis, and application of adiabatic and reversible logic circuits for security applications. First, two major debates in reversible computing are addressed. These debates must be addressed in order to devise computational logic primitives in any emerging quantum computing technology. First, we address whether charged based computing is limited due to the use of charge as a state variable. We propose the use of body biasing in CMOS adiabatic systems as a design methodology for reducing the need for gradually changing the energy barriers. Simulation results in HSPICE at 22nm are presented which show behavior of a source-memory device operating at sub-Landauer operation. Second, we address whether reversible logic can be used to design sequential computing structures, such as memory devices. we present an analysis of Quantum Turing Machines with sequential reversible logic structures, to show that the entropy gain is substantially less than the Landauer Barrier of kTln(2), which is the limiting factor for irreversible computing. A mathematical proof is presented showing bit erasure does not occur in sequential reversible logic structures, and that these devices are physically reversible as long as appropriate delay elements are inserted in the feedback paths to prevent race conditions. This proof validates implementation of sequential reversible logic towards ultra-low power computing.;Next, a novel algorithm for synthesis of adiabatic circuits in CMOS is proposed. This approach is unique because it correlates the offsets in the permutation matrix to the transistors required for synthesis, instead of determining an equivalent circuit and substituting a previously synthesized circuit from a library. Parallelism is used, and the bijective properties of the device to achieve synthesis of the logic structure in O(n) time. Then, using the ESPRESSO heuristic for minimization of Boolean functions method on each output node in parallel, we optimize the synthesized circuit. It is demonstrated that the algorithm produces a 32.86% improvement over previously synthesized circuit benchmarks.;For stronger mitigation of DPA attacks, we propose the implementation of Adiabatic Dynamic Differential Logic for applications in secure IC design. Such an approach is effective in reducing power consumption, demonstrated using HSPICE simulations with 22nm predictive technology. The benefits of our design are demonstrated by comparing instantaneous power waveforms and observing the magnitude of differential power spikes during switching events. First, simulation results for body-biasing on sub-threshold adiabatic inverters show an improvement in differential power up to 43.28% for similar inverters without body biasing. Then, a High Performance Adiabatic Dynamic Differential Logic (PADDL) is presented for an implementation in high frequency secure ICs. This method improves the differential power over previous dynamic and differential logic methods by up to 89.65%. Finally, we propose a Body-Biased Adiabatic Dynamic Differential Logic (BADDL) for ultra-low power applications. Simulation results show that the differential power was improved upon by a factor of 199.16.;Then, we present an adiabatic S-box which significantly reduces energy imbalance compared to previous benchmarks. The design is capable of forward encryption and reverse decryption with minimal overhead, allowing for efficient hardware reuse.
机译:可编程可逆逻辑正在作为一种前瞻性逻辑设计风格出现,可在现代纳米技术和量子计算中实现,并且对电路发热的影响最小。绝热逻辑是用于CMOS中可逆逻辑的设计方法,其中控制流经电路的电流,以使由于开关和电容器耗散而引起的能量耗散最小。使用可逆逻辑和量子计算机算法的最新进展允许改进计算机体系结构。生产经济高效的安全集成芯片(例如智能卡)需要硬件设计人员考虑在尺寸,安全性和功耗方面进行权衡。为了设计成功的以安全性为中心的设计,底层硬件必须包含内置的保护机制,以通过防止诸如差分功率分析(DPA)之类的边信道攻击来补充诸如AES和Triple DES之类的密码算法。动态逻辑混淆了输出波形和电路操作,降低了DPA攻击的效率。在设计和分析局部最佳绝热元素以减轻侧通道攻击方面存在重大研究。但是,这些工作都没有解决绝热逻辑在实现灵活和可编程硬件安全策略中的使用。绝热逻辑也没有在可信赖的投票系统和数据加密标准之类的硬件安全应用中使用。在本论文中,我致力于绝热和可逆逻辑电路在安全应用中的理论,综合及其应用。首先,讨论了可逆计算中的两个主要争论。为了解决任何新兴的量子计算技术中的计算逻辑原语,必须解决这些争论。首先,我们解决由于使用收费作为状态变量而导致基于收费的计算是否受到限制的问题。我们建议在CMOS绝热系统中使用体偏置作为一种设计方法,以减少逐渐改变能垒的需求。给出了在22nm的HSPICE中的仿真结果,该结果显示了以子Landauer操作方式工作的源存储设备的行为。其次,我们讨论是否可逆逻辑可用于设计顺序计算结构,例如存储设备。我们对具有顺序可逆逻辑结构的量子图灵机进行了分析,结果表明熵增益显着小于kTln(2)的Landauer壁垒,kTln(2)是不可逆计算的限制因素。提出了一个数学证明,表明在顺序可逆逻辑结构中不会发生位擦除,并且只要在反馈路径中插入适当的延迟元件以防止竞争情况,这些设备就可以物理上可逆。该证明验证了面向超低功耗计算的顺序可逆逻辑的实现。接下来,提出了一种在CMOS中合成绝热电路的新算法。这种方法之所以独特,是因为它将置换矩阵中的偏移量与合成所需的晶体管相关联,而不是确定等效电路并从库中替换先前合成的电路。使用并行性,并且器件的双射特性可在O(n)时间内实现逻辑结构的综合。然后,使用ESPRESSO启发式并行化每个输出节点上的布尔函数方法的最小化,我们优化了合成电路。证明了该算法比以前合成的电路基准性能提高了32.86%。;为更强地缓解DPA攻击,我们提出了绝热动态差分逻辑的实现方案,用于安全IC设计中的应用。使用具有22nm预测技术的HSPICE仿真证明,这种方法可有效降低功耗。通过比较瞬时功率波形并观察开关事件期间差分功率尖峰的幅度,可以证明我们设计的好处。首先,在亚阈值绝热逆变器上进行车身偏置的仿真结果表明,对于没有车身偏置的类似逆变器,其差分功率提高了43.28%。然后,提出了一种高性能绝热动态差分逻辑(PADDL),用于在高频安全IC中实现。与以前的动态和差分逻辑方法相比,此方法将差分功率提高了高达89.65%。最后,我们针对超低功耗应用提出了一种基于人体的绝热动态差分逻辑(BADDL)。仿真结果表明,差分功率提高了199.16倍。然后,我们提出了一种绝热S形盒,与以前的基准相比,该盒显着减少了能量不平衡。该设计能够以最小的开销进行正向加密和反向解密,从而实现有效的硬件重用。

著录项

  • 作者

    Morrison, Matthew A.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号