首页> 外文期刊>Journal of multiple-valued logic and soft computing >Granular RBF Neural Network Implementation of Fuzzy Systems: Application to Time Series Modeling
【24h】

Granular RBF Neural Network Implementation of Fuzzy Systems: Application to Time Series Modeling

机译:模糊系统的粒状RBF神经网络实现:在时间序列建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this study, we are concerned with fuzzy systems for mapping input fuzzy sets to output fuzzy sets. The RBF (Radial Basic Function) network or other neural networks are endowed with some properties that make them more flexible and logically appealing. At first, we discuss the basic structure of the fuzzy system. RBF neural network architectures are proposed as techniques for performing fuzzy logic inference in fuzzy systems. Then, we show a new approach of function estimation for time series model by means of a granular RBF neural network based on Gaussian activation function modeled by cloud concept. The learning aspects of RBF networks are presented in accordance to supervised learning in which the rule weights are adjusted following the gradient of a certain objective function. An application is included to illustrate the approximation performance of these approaches.
机译:在这项研究中,我们关注将输入模糊集映射到输出模糊集的模糊系统。 RBF(径向基本函数)网络或其他神经网络具有某些属性,这些属性使它们更灵活并且在逻辑上更具吸引力。首先,我们讨论模糊系统的基本结构。提出了RBF神经网络架构作为在模糊系统中执行模糊逻辑推理的技术。然后,我们展示了一种基于时间序列模型的函数估计的新方法,该方法是基于基于云概念建模的高斯激活函数的粒状RBF神经网络。 RBF网络的学习方面是根据监督学习来介绍的,在监督学习中,规则权重根据某个目标函数的梯度进行调整。包含一个应用程序来说明这些方法的近似性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号