首页> 外文期刊>Journal of multiple-valued logic and soft computing >Finding Attractors in Synchronous Multiple-Valued Networks Using SAT-based Bounded Model Checking
【24h】

Finding Attractors in Synchronous Multiple-Valued Networks Using SAT-based Bounded Model Checking

机译:使用基于SAT的有界模型检查在同步多值网络中寻找吸引子

获取原文
获取原文并翻译 | 示例

摘要

Synchronous multiple-valued networks are a discrete-space discrete-time model of gene regulatory networks. Theircycle of states, called attractors, are believed to give a good indication of the possible functional modes of the system. This motivates research on algorithms for finding attractors. Existing decision diagram-based approaches have limited capacity due to the excessive memory requirements of decision diagrams. Simulation-based approaches can be applied to larger networks, however, they are incomplete. We present an algorithm which uses a SAT-based bounded model checking approach to find all allractors in a multiple-valued network. The efficiency of the presented algorithm is evaluated by analyzing 30 network models of real biological processes as well as 35.000 randomly generated 4-valued networks. The results show that our algorithm has a potential to handle an order of magnitude larger models than currently possible.
机译:同步多值网络是基因调控网络的离散空间离散时间模型。人们认为它们的状态循环(称为吸引子)可以很好地表明系统的可能功能模式。这激发了对寻找吸引子的算法的研究。由于决策图过多的内存需求,因此现有的基于决策图的方法的容量有限。基于仿真的方法可以应用于较大的网络,但是它们并不完整。我们提出一种算法,该算法使用基于SAT的有界模型检查方法来查找多值网络中的所有干扰物。通过分析真实生物过程的30个网络模型以及35.000个随机生成的4值网络来评估所提出算法的效率。结果表明,我们的算法有潜力处理比当前可能的模型大一个数量级的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号