首页> 外文会议>40th IEEE International Symposium on Multiple-Valued Logic >Finding Attractors in Synchronous Multiple-Valued Networks Using SAT-Based Bounded Model Checking
【24h】

Finding Attractors in Synchronous Multiple-Valued Networks Using SAT-Based Bounded Model Checking

机译:使用基于SAT的有界模型检查在同步多值网络中寻找吸引子

获取原文
获取原文并翻译 | 示例

摘要

Synchronous multiple-valued networks are a discrete-space discrete-time model of the gene regulatory network of living cells. In this model, cell types are represented by the cycles in the state transition graph of a network, called attractors. When the effect of a disease or a mutation on a cell is studied, attractors have to be re-computed each time a fault is injected in the model. This motivates research on algorithms for finding attractors. Existing decision diagram-based approaches have limited capacity due to the excessive memory requirements of decision diagrams. Simulation-based approaches can be applied to larger networks, however, they are incomplete. We present an algorithm for finding attractors which uses a SAT-based bounded model checking. Our model checking approach exploits the deterministic nature of the network model to reduce runtime. Although the idea of applying model checking to the analysis of gene regulatory networks is not new, to our best knowledge, we are the first to use it for computing all attractors in a model. The efficiency of the presented algorithm is evaluated by analyzing 7 networks models of real biological processes as well as 35.000 randomly generated 4-valued networks. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible.
机译:同步多值网络是活细胞基因调控网络的离散空间离散时间模型。在此模型中,单元格类型由网络的状态转移图中的循环(称为吸引子)表示。在研究疾病或突变对细胞的影响时,每次将故障注入模型时都必须重新计算吸引子。这激发了对寻找吸引子的算法的研究。由于决策图过多的内存需求,因此现有的基于决策图的方法的容量有限。基于仿真的方法可以应用于较大的网络,但是它们并不完整。我们提出了一种寻找吸引子的算法,该算法使用基于SAT的有界模型检查。我们的模型检查方法利用网络模型的确定性来减少运行时间。尽管将模型检查应用于基因调控网络分析的想法并不新鲜,但据我们所知,我们是第一个使用它来计算模型中所有吸引子的想法。通过分析真实生物过程的7个网络模型以及35.000个随机生成的4值网络来评估所提出算法的效率。结果表明,我们的方法有可能处理比当前可能的模型大一个数量级的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号