首页> 外文期刊>Journal on multimodal user interfaces >Gesture recognition based on HMM-FNN model using a Kinect
【24h】

Gesture recognition based on HMM-FNN model using a Kinect

机译:基于Kinect的基于HMM-FNN模型的手势识别

获取原文
获取原文并翻译 | 示例

摘要

Addressing the problem of complex dynamic gesture recognition, this paper obtains the body depth image through the body feeling sensor device-Kinect; the threshold segmentation method is used to segment the gestures depth image, on the basis of the common distance between hand and body. Then, the HMM-FNN model, which combines the hidden markov model (HMM) and the fuzzy neural network (FNN), is used for dynamic gesture recognition. This paper mainly focuses on the trainees' common operations of equipment in virtual substation to set the custom gesture interaction sets. Based on the characteristic of the complex dynamic gesture, gesture image was decomposed into three feature sequences-hand shape change, hand position changes in the two-dimensional plane, and movement in the Z-axis direction, for feature extraction. The HMM model is respectively built according to the three sub sequences, and the FNN was connected to judge the semantics of gesture using the fuzzy reasoning. By experimental verification, the HMM-FNN model can quickly and effectively identify complicated dynamic hand gestures. Meanwhile, it has strong robustness. The recognition effect is superior to that of the simple HMM model.
机译:针对复杂的动态手势识别问题,本文通过人体感应器Kinect获得人体深度图像。阈值分割方法用于根据手与身体之间的公共距离对手势深度图像进行分割。然后,将隐马尔可夫模型(HMM)和模糊神经网络(FNN)相结合的HMM-FNN模型用于动态手势识别。本文主要针对学员在虚拟变电站中设备的通用操作,以设置自定义手势交互集。根据复杂动态手势的特征,将手势图像分解为三个特征序列:手形变化,二维平面上的手位置变化以及Z轴方向的运动,以进行特征提取。根据三个子序列分别建立HMM模型,并使用模糊神经网络连接FNN来判断手势的语义。通过实验验证,HMM-FNN模型可以快速有效地识别复杂的动态手势。同时,它具有很强的鲁棒性。识别效果优于简单的HMM模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号