首页> 外文期刊>Journal of logic and computation >The Axiom of Choice in computability theory and Reverse Mathematics with a cameo for the Continuum Hypothesis
【24h】

The Axiom of Choice in computability theory and Reverse Mathematics with a cameo for the Continuum Hypothesis

机译:可计算地理理论的首选和逆转数学与Careo的连续性假设

获取原文
获取原文并翻译 | 示例

摘要

The Axiom of Choice (AC for short) is the most (in)famous axiom of the usual foundations of mathematics, ZFC set theory. The (non-)essential use of AC in mathematics has been well-studied and thoroughly classified. Now, fragments of countable AC not provable in ZF have recently been used in Kohlenbach's higher-order Reverse Mathematics to obtain equivalences between closely related compactness and local-global principles. We continue this study and show that NCC, a weak choice principle provable in ZF and much weaker systems, suffices for many of these results. In light of the intimate connection between Reverse Mathematics and computability theory, we also study realisers for NCC, i.e. functionals that produce the choice functions claimed to exist by the latter, from the other data. Our hubris of undertaking the hitherto underdeveloped study of the computational properties of (choice functions from) AC leads to interesting results. For instance, using Kleene's S1-S9 computation schemes, we show that various total realisers for NCC compute Kleene's there exists(3), a functional that gives rise to full second-order arithmetic, and vice versa. By contrast, partial realisers for NCC should be much weaker, but establishing this conjecture remains elusive. By way of catharsis, we show that the Continuum Hypothesis (CH for short) is equivalent to the existence of a countably based partial realiser for NCC. The latter kind of realiser does not compute Kleene's there exists(3) and is therefore strictly weaker than a total one.
机译:首选的公理(简称AC)是数学常规基础的最多(IN),ZFC集理论。在数学中的(非)在数学中的基本用途已经很好地研究并彻底分类。现在,在ZF中不可提供的可数AC的碎片最近用于Kohlenbach的高阶逆转数学,以获得密切相关的紧凑性和地方 - 全球原则之间的等效性。我们继续这项研究,表明,ZF和较弱的系统中可提供弱点,较弱的选择原则,足以满足这些结果。鉴于逆向数学和可计算性理论之间的密切联系,我们还研究了NCC的实践,即产生所声称所要求的选择功能的功能,从其他数据中。我们的承诺迄今为止的哈布里斯欠发达的(来自)AC的计算属性的研究,导致有趣的结果。例如,使用Kleene的S1-S9计算方案,我们显示NCC计算Kleene的各种总实体存在(3),一种功能,即产生完整的二阶算法,反之亦然。相比之下,NCC的部分确定性应该更弱,但建立这种猜想仍然难以捉摸。通过宣泄,我们表明连续的假设(CH for Short)相当于存在于NCC的可选地基于部分确定性。后一种实际的实际器不会计算Kleene存在(3),因此严格弱于总体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号