首页> 外文会议>International Workshop on Logic, Language, Information and Computation >Reverse Mathematics and Computability Theory of Domain Theory
【24h】

Reverse Mathematics and Computability Theory of Domain Theory

机译:领域理论的逆数学与可计算性理论

获取原文

摘要

This paper deals with the foundations of mathematics and computer science, domain theory in particular; the latter studies certain ordered sets, called domains, with close relations to topology. Conceptually speaking, domain theory provides a highly abstract and general formalisation of the intuitive notions 'approximation' and 'convergence'. Thus, a major application in computer science is the semantics of programming languages. We study the following foundational questions: (Q1) Which axioms are needed to prove basic results in domain theory? (Q2) How hard it is to compute the objects in these basic results? Clearly, (Q1) is part of the program Reverse Mathematics, while (Q2) is part of computability theory in the sense of Kleene. Our main result is that even very basic theorems in domain theory are extremely hard to prove, while the objects in these theorems are similarly extremely hard to compute; this hardness is measured relative to the usual hierarchy of comprehension axioms, namely one requires full second-order arithmetic in each case. By contrast, we show that the formalism of domain theory obviates the need for the Axiom of Choice, a foundational concern.
机译:本文讨论了数学和计算机科学的基础,特别是领域理论。后者研究与拓扑紧密相关的某些有序集,称为域。从概念上讲,领域理论为直观概念“近似”和“收敛”提供了高度抽象和通用的形式化形式。因此,计算机科学的主要应用是编程语言的语义。我们研究以下基本问题:(Q1)需要哪些公理来证明领域理论的基本结果? (Q2)在这些基本结果中计算对象有多困难?显然,(Q1)是反向数学程序的一部分,而(Q2)是Kleene意义上的可计算性理论的一部分。我们的主要结果是,即使领域理论中非常基本的定理也很难证明,而这些定理中的对象也同样很难计算。这种硬度是相对于理解公理的通常等级来衡量的,即在每种情况下都需要完整的二阶算术。相比之下,我们表明领域理论的形式主义消除了对选择公理的基本需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号