首页> 外文期刊>Journal of logic and computation >Founded semantics and constraint semantics of logic rules
【24h】

Founded semantics and constraint semantics of logic rules

机译:建立逻辑规则的语义和约束语义

获取原文
获取原文并翻译 | 示例

摘要

Logic rules and inference are fundamental in computer science and have been studied extensively. However, prior semantics of logic languages can have subtle implications and can disagree significantly, on even very simple programs, including in attempting to solve the well-known Russell's paradox. These semantics are often non-intuitive and hard-to-understand when unrestricted negation is used in recursion. This paper describes a simple new semantics for logic rules, founded semantics, and its straightforward extension to another simple new semantics, constraint semantics, that unify the core of different prior semantics. The new semantics support unrestricted negation, as well as unrestricted existential and universal quantifications. They are uniquely expressive and intuitive by allowing assumptions about the predicates, rules and reasoning to be specified explicitly, as simple and precise binary choices. They are completely declarative and relate cleanly to prior semantics. In addition, founded semantics can be computed in linear time in the size of the ground program.
机译:逻辑规则和推理是计算机科学的基础,并已广泛研究。然而,逻辑语言的先前语言可以具有微妙的影响,并且可以显着不同意,即使是非常简单的程序,包括试图解决着名的拉塞尔的悖论。当在递归中使用不受限制的否定时,这些语义通常是不直观的,并且难以理解。本文介绍了逻辑规则,创立的语义和其直接扩展的简单新语义,以及另一个简单的新语义,约束语义,统一不同先前语义的核心。新的语义支持不受限制的否定,以及不受限制的存在性和普遍的量化。它们是独特的表达和直观,允许明确指定谓词,规则和推理,作为简单和精确的二进制选择。它们是完全宣言的,并干净地与先前的语义相关联。此外,建立的语义可以在地面程序大小的线性时间中计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号