首页> 外文期刊>Journal of logic and computation >A proof-theoretic study of bi-intuitionistic propositional sequent calculus
【24h】

A proof-theoretic study of bi-intuitionistic propositional sequent calculus

机译:双直觉命题序列阶段的证明理论研究

获取原文
获取原文并翻译 | 示例

摘要

Bi-intuitionistic logic is the conservative extension of intuitionistic logic with a connective dual to implication usually called 'exclusion'. A standard-style sequent calculus for this logic is easily obtained by extending multiple-conclusion sequent calculus for intuitionistic logic with exclusion rules dual to the implication rules (in particular, the exclusion-left rule restricts the premise to be single-assumption). However, similarly to standard-style sequent calculi for non-classical logics like S5, this calculus is incomplete without the cut rule. Motivated by the problem of proof search for propositional bi-intuitionistic logic (BiInt), various cut-free calculi with extended sequents have been proposed, including (i) a calculus of nested sequents by Gore et al., which includes rules for creation and removal of nests (called 'nest rules', resp. 'unnest rules') and (ii) a calculus of labelled sequents by the authors, derived from the Kripke semantics of BiInt, which includes 'monotonicity rules' to propagate truth/falsehood between accessible worlds.In this paper, we develop a proof-theoretic study of these three sequent calculi for BiInt grounded on translations between them. We start by establishing the basic meta-theory of the labelled calculus( including cut-admissibility), and use then the translations to obtain results for the other two calculi. The translation of the nested calculus into the standard-style calculus explains how the unnest rules encapsulate cuts. The translations between the labelled and the nested calculi reveal the two formats to be very close, despite the former incorporating semantic elements, and the latter being syntax-driven. Indeed, we single out (i) a labelled calculus whose sequents have a 'label in focus' and which includes 'refocusing rules' and (ii) a nested calculus with monotonicity and refocusing rules, and prove these two calculi to be isomorphic (in a bijection both at the level of sequents and at the level of derivations).
机译:双直觉逻辑是直观逻辑的保守扩展,具有通常称为“排除”的连接双重含义。通过扩展用于直觉逻辑的多结论逻辑与含义规则的直觉逻辑(特别是,排除左规则限制为单假设的前提),可以轻松获得该逻辑的标准样式序列演算。然而,与S5这样的非古典逻辑的标准式搜索结算类似,这种微积分在没有切割规则的情况下是不完整的。通过证明双直觉逻辑(Biint)的证据搜索问题,已经提出了具有扩展顺序的各种无染色的计算,包括(i)Gore等人的嵌套顺序的微积分。其中包括创造的规则和删除巢穴(称为“巢规则”,RESP。'UNEST规则')和(ii)作者的标记顺序的微积分,来自BIINT的Kripke语义,其中包括“单调规则”之间传播真理/虚假可访问的世界。本文,我们开发了对这三个搜索结石的证据学习,为Biint接地的Biint。我们首先建立标记的微积分的基本元理论(包括可削减可容许),并使用翻译来获得另外两个计算结果的结果。嵌套微积分到标准式微积分的翻译解释了未最终规则如何封装切割。嵌套和嵌套的Calculi之间的翻译显示了两种格式非常接近,尽管以前的结合语义元素,后者是语法驱动的。实际上,我们单挑(i)标记的微积分,其顺序具有“重点”的“标签”,其包括具有单调性和重新分段规则的嵌套微积分,并证明这两个计算是同构的同性(IN)在顺序水平和衍生水平上的双射精。

著录项

  • 来源
    《Journal of logic and computation》 |2018年第1期|165-202|共38页
  • 作者

    Pinto Luis; Uustalu Tarmo;

  • 作者单位

    Univ Minho Ctr Matemat Campus Gualtar P-4710057 Braga Portugal;

    Tallinn Univ Technol Inst Cybernet Akad Tee 21 EE-12618 Tallinn Estonia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号