首页> 外文期刊>Journal of logic and computation >Symbolic possibilistic logic: completeness and inference methods
【24h】

Symbolic possibilistic logic: completeness and inference methods

机译:符号可能性逻辑:完整性和推断方法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the extension of possibilistic logic to the case when weights attached to formulas are symbolic. These weights then stand for variables that lie in a totally ordered scale, and only partial knowledge is available on the relative strength of these weights in the form of inequality constraints. Reasoning in symbolic possibilistic logic means solving two problems. One is to compute symbolic expressions representing the weights of conclusions of a possibilistic knowledge base. The other problem is that of comparing the relative strength of derived weights, so as to find out if one formula is more certain than another one. Regarding the first problem, a proof of the soundness and the completeness of this logic according to the relative certainty semantics in the sense of necessity measures is provided. Based on this result, two syntactic inference methods are suggested. The first one shows how to use the notion of minimal inconsistent subsets and known techniques that compute them, so as to obtain the symbolic expression representing the necessity degree of a possibilistic formula. A second family of methods computes prime implicates and takes inspiration from the concept of assumption-based theory. It enables symbolic weights attached to consequences to be simplified in the course of their computation, taking inequality constraints into account. Finally, an algorithm is proposed to find if a consequence is more certain than another one. A comparison with the original version of symbolic possibilistic logic introduced by Benferhat and Prade in 2005 is provided.
机译:本文研究了将可能性逻辑扩展到公式的权重为符号的情况。然后,这些权重代表处于完全有序规模的变量,并且关于不等式约束形式的这些权重的相对强度只有部分知识可用。符号可能性逻辑中的推理意味着解决两个问题。一种是计算表示可能的知识库结论权重的符号表达式。另一个问题是比较得出的权重的相对强度,以便确定一个公式是否比另一个公式更确定。关于第一个问题,提供了根据必要性意义上的相对确定性语义对这种逻辑的健全性和完整性的证明。基于此结果,提出了两种句法推理方法。第一个展示了如何使用最小不一致子集的概念以及计算它们的已知技术,从而获得表示可能公式必要性的符号表达式。第二类方法计算主要含义,并从基于假设的理论的概念中获得启发。考虑到不平等约束,它可以简化后果计算中的符号权重。最后,提出了一种算法来确定结果是否比另一结果更确定。提供了与Benferhat和Prade在2005年引入的符号可能性逻辑的原始版本的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号