首页> 外文期刊>Journal of Logic and Algebraic Programming >Normal forms and normal theories in conditional rewriting
【24h】

Normal forms and normal theories in conditional rewriting

机译:条件重写中的范式和范式理论

获取原文
获取原文并翻译 | 示例

摘要

We present several new concepts and results on conditional term rewriting within the general framework of order-sorted rewrite theories (OSRTs), which support types, subtypes and rewriting modulo axioms, and contains the more restricted framework of conditional term rewriting systems (CTRSs) as a special case. The concepts shed light on several subtle issues about conditional rewriting and conditional termination. We point out that the notions of irreducible term and of normal form, which coincide for unconditional rewriting, have been conflated for conditional rewriting but are in fact totally different notions. Normal form is a stronger concept. We call any rewrite theory where all irreducible terms are normal forms a normal theory. We argue that normality is essential to have good executability and computability properties. Therefore we call all other theories abnormal, freaks of nature to be avoided. The distinction between irreducible terms and normal forms helps in clarifying various notions of strong and weak termination. We show that abnormal theories can be terminating in various, equally abnormal ways; and argue that any computationally meaningful notion of strong or weak conditional termination should be a property of normal theories. In particular we define the notion of a weakly operationally terminating (or weakly normalizing) OSRT, discuss several evaluation mechanisms to compute normal forms in such theories, and investigate general conditions under which the rewriting-based operational semantics and the initial algebra semantics of a confluent, weakly normalizing OSRT coincide thanks to a notion of canonical term algebra. Finally, we investigate appropriate conditions and proof methods to ensure that a rewrite theory is normal; and characterize the stronger property of a rewrite theory being operationally terminating in terms of a natural generalization of the notion of quasi-decreasing order.
机译:在顺序排序重写理论(OSRT)的一般框架内,我们提出了一些关于条件术语重写的新概念和结果,它们支持类型,子类型和重写模公理,并且包含条件术语重写系统(CTRS)的更受限制的框架,例如:特例。该概念阐明了有关条件重写和条件终止的一些微妙问题。我们指出,不可约术语和范式的概念与无条件重写相吻合,它们已经被有条件重写了,但实际上是完全不同的概念。范式是一个更强的概念。我们将所有不可约术语均为正常的重写理论称为正常理论。我们认为正态性对于拥有良好的可执行性和可计算性至关重要。因此,我们称所有其他理论都是反常的,应避免自然的怪胎。不可约术语与范式之间的区别有助于澄清强终止和弱终止的各种概念。我们证明异常理论可以以各种同样异常的方式终止。并认为强或弱条件终止的任何在计算上有意义的概念都应该是正常理论的一个属性。特别是,我们定义了弱操作终止(或弱规范化)OSRT的概念,讨论了几种评估机制来计算此类理论中的范式,并研究了汇合的基于重写的操作语义和初始代数语义的一般条件,由于规范术语代数的概念,OSRT的弱归一化恰逢其时。最后,我们研究适当的条件和证明方法以确保重写理论是正常的;并刻画了重写理论的更强属性,该理论在操作上以准降序概念的自然概括而终止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号