首页> 外文期刊>Journal of interconnection networks >Edge Fault-Tolerant Strong Hamiltonian Laceability of Balanced Hypercubes
【24h】

Edge Fault-Tolerant Strong Hamiltonian Laceability of Balanced Hypercubes

机译:平衡超立方体的边缘容错强哈密顿量

获取原文
获取原文并翻译 | 示例

摘要

The balanced hypercube BH_n, proposed by Wu and Huang, is a new variation of hyper-cube. A Hamiltonian bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path between two arbitrary vertices from different partite sets. A Hamiltonian laceable graph G is strongly Hamiltonian laceable if there is a path of length |V(G)| - 2 between any two distinct vertices of the same partite set. A graph G is called k-edge-fault strong Hamiltonian laceable, if G - F is strong Hamiltonian laceable for any edge-fault set F with |F| ≤ k. It has been proved that the balanced hypercube BH_n is strong Hamiltonian laceable. In this paper, we improve the above result and prove that BH_n is (n - 1)-edge-fault strong Hamiltonian laceable.
机译:Wu和Huang提出的平衡超立方体BH_n是超立方体的新变体。如果在来自不同部分集的两个任意顶点之间存在哈密顿路径,则哈密顿二分图是可哈密顿量的。如果存在长度为| V(G)|的路径,则哈密顿可接合图G是强哈密顿可接合的。 -同一零件组的任意两个不同顶点之间的2。如果对于任何具有| F |的边故障集F,G-F是强哈密顿量,则图G称为k-边缘-故障强哈密顿量。 ≤k。事实证明,平衡超立方体BH_n具有强哈密顿性。在本文中,我们改进了以上结果,并证明BH_n是(n-1)个边缘断层的强哈密顿带。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号