首页> 外文期刊>Journal of intelligent material systems and structures >Computational micromechanics analysis of electron-hopping-induced conductive paths and associated macroscale piezoresistive response in carbon nanotube-polymer nanocomposites
【24h】

Computational micromechanics analysis of electron-hopping-induced conductive paths and associated macroscale piezoresistive response in carbon nanotube-polymer nanocomposites

机译:碳纳米管-聚合物纳米复合材料中电子跃迁诱导的导电路径和相关的宏压阻响应的计算微力学分析

获取原文
获取原文并翻译 | 示例

摘要

In this study, a computational model is developed using finite-element techniques within a continuum micromechanics framework to capture the effect of electron-hopping-induced conductive paths at the nanoscale which contribute to the macroscale piezoresistive response of the nanocomposite. This is achieved by tracking the position of the nanotubes under applied deformations and modifying the conductivity of the intertube region depending on the relative proximity of individual pairs of nanotubes. The formation and disruption of the electron-hopping pathways are highly dependent on intertube distances and under deformations can result in microstructural rearrangements in terms of electrostatic properties leading to transitions in material symmetries and component magnitudes of the effective electrostatic properties. Thus, in order to capture the complexities of changing inhomogeneous nanoscale electrostatic behavior, where analytical Eshelby's approaches cannot be used, a computational micromechanics model is needed. The effective conductivity and piezoresistive strain tensor coefficients are evaluated using volume-averaged energy equivalencies for aligned CNT- polymer nanocomposites in the transverse direction exploring different volume fractions of CNTs in the polymer and the maximum electron-hopping range. The impact of the electron-hopping mechanism on the effective piezoresistive response is studied through the macroscale effective gauge factors under different loading conditions. The effective piezoresistive strain coefficients and macroscale effective gauge factors are observed to be nonlinear with applied macroscale strain and are highly dependent on the type of boundary conditions. The effective macroscale gauge factors observed in the current study have magnitudes comparable to experimental observations reported in the literature with higher gauge factors observed closer to the percolation threshold.
机译:在这项研究中,在连续微力学框架内使用有限元技术开发了一种计算模型,以捕获电子跳跃诱发的纳米级导电路径的影响,这有助于纳米复合材料的宏压阻响应。这是通过在施加的变形下跟踪纳米管的位置并根据各个纳米管对的相对接近度来修改管间区域的电导率来实现的。电子跳跃路径的形成和破坏高度依赖于管间距离,并且在变形下会导致静电性能方面的微观结构重排,从而导致材料对称性的转变和有效静电性能的组件大小。因此,为了捕获变化的不均匀纳米级静电行为的复杂性,在这种情况下无法使用分析性的Eshelby方法,需要一个计算微力学模型。有效的电导率和压阻应变张量系数是使用横向平均排列的CNT-聚合物纳米复合材料的体积平均能量当量来评估的,探索了聚合物中CNT的不同体积分数和最大电子跳跃范围。通过不同负载条件下的有效尺度因子研究了电子跳跃机制对有效压阻响应的影响。观察到有效压阻应变系数和宏观有效应变系数在施加宏观应变时是非线性的,并且高度依赖于边界条件的类型。在当前研究中观察到的有效宏观尺度因子具有与文献中报道的实验观察结果相当的量值,其中更高的尺度因子更接近于渗滤阈值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号