首页> 外文OA文献 >Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites
【2h】

Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites

机译:碳纳米管-聚合物纳米复合材料多功能性质的微力学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom-posites in which they are a constituent. Emphasis is placed on the e?ective elastic properties as well as electrical and thermal conductivities of nanocomposites con-sisting of randomly oriented single walled carbon nanotubes in epoxy. The e?ective elastic properties of aligned, as well as clustered and well-dispersed nanotubes in epoxy are discussed in the context of nanotube bundles using both the generalized self-consistent composite cylinders method as well as using computational microme-chanics techniques. In addition, interphase regions are introduced into the composite cylinders assemblages to account for the varying degrees of load transfer between nanotubes and the epoxy as a result of functionalization or lack thereof. Model pre-dictions for randomly oriented nanotubes both with and without interphase regions are compared to measured data from the literature with emphasis placed on assessing the bounds of the e?ective nanocomposite properties based on the uncertainty in the model input parameters. The generalized self-consistent composite cylinders model is also applied to model the electrical and thermal conductivity of carbon nanotube-epoxy nanocomposites. Recent experimental observations of the electrical conductivity of carbon nanotube polymer composites have identi?ed extremely low percolation limits as well as a per-ceived double percolation behavior. Explanations for the extremely low percolation limit for the electrical conductivity of these nanocomposites have included both the creation of conductive networks of nanotubes within the matrix and quantum e?ects such as electron hopping or tunneling. Measurements of the thermal conductivity have also shown a strong dependence on nanoscale e?ects. However, in contrast, these nanoscale e?ects strongly limit the ability of the nanotubes to increase the thermal conductivity of the nanocomposite due to the formation of an interfacial thermal resistance layer between the nanotubes and the surrounding polymer. As such, emphasis is placed here on the incorporation of nanoscale e?ects, such as elec-tron hopping and interfacial thermal resistance, into the generalized self-consistent composite cylinder micromechanics model.
机译:本工作提供了一种基于广义自洽复合圆柱体方法的微力学方法,该方法是一种非Eshelby方法,用于评估碳纳米管对其所构成的纳米复合材料的多功能性质的影响。重点放在由无规取向的单壁碳纳米管在环氧树脂中组成的纳米复合材料的有效弹性性能以及电导率和导热率上。在纳米管束的情况下,使用广义自洽复合圆柱体方法以及计算微力学技术,讨论了在环氧树脂中排列的,簇状的和分散良好的纳米管的有效弹性性能。另外,将相间区域引入到复合圆柱体组件中,以解决由于官能化或缺乏官能团而导致纳米管和环氧树脂之间的负载转移程度不同。将具有和不具有相间区域的随机取向的纳米管的模型预测与来自文献的测量数据进行比较,重点放在基于模型输入参数的不确定性评估有效纳米复合材料性能的界限上。广义的自洽复合圆柱体模型也被用来模拟碳纳米管-环氧树脂纳米复合材料的电导率和导热率。碳纳米管聚合物复合材料的电导率的最新实验观察结果已确定极低的渗透极限以及可感知的双重渗透行为。这些纳米复合材料的电导率极低的渗透极限的解释既包括在基体内形成纳米管的导电网络,也包括量子效应,例如电子跳跃或隧穿。热导率的测量还显示出对纳米级效应的强烈依赖性。但是,相反,由于在纳米管和周围的聚合物之间形成了界面热阻层,这些纳米级效应极大地限制了纳米管增加纳米复合材料导热性的能力。因此,这里重点放在将纳米尺度的影响,例如电子跳跃和界面热阻,纳入广义的自洽复合圆柱微力学模型中。

著录项

  • 作者

    Seidel Gary Don;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号