首页> 外文会议>ASME conference on smart materials, adaptive structures and intelligent systems >COMPUTATIONAL MICROMECHANICS MODEL TO STUDY THE EFFECTIVE MACROSCALE PIEZORESISTIVITY OF CARBON NANOTUBE-POLYMER NANOCOMPOSITES FOR STRAIN AND DAMAGE SENSING
【24h】

COMPUTATIONAL MICROMECHANICS MODEL TO STUDY THE EFFECTIVE MACROSCALE PIEZORESISTIVITY OF CARBON NANOTUBE-POLYMER NANOCOMPOSITES FOR STRAIN AND DAMAGE SENSING

机译:碳纳米管-聚合物纳米复合材料对应变和损伤传感的有效宏观压敏电阻率的计算微力学模型

获取原文

摘要

The formation/disruption of the electron hopping pathways is considered to be one of the dominant mechanisms affecting macroscale effective piezoresistive response of carbon nan-otube (CNT)-polymer nanocomposites. In this study, a computational micromechanics model is developed using finite element techniques to capture the effect of electron hopping induced conductive pathways at the nanoscale which contribute to the macroscale piezoresistive response of the CNT-polymer nanocomposites. In addition, damage is allowed to evolve at the CNT-polymer interface through electromechanical cohesive zones resulting in disruption of electron hopping pathways in the direction of applied strain. The impact of the electron hopping mechanism and nanoscale interfacial damage evolution on the effective piezoresistive response is studied through the macroscale effective material properties and gauge factors evaluated using micromechanics techniques based on electrostatic energy equivalence. It is observed that the interfacial damage at the nanoscale results in lower gauge factors as compared to the perfectly bonded interface.
机译:电子跳跃路径的形成/破坏被认为是影响碳纳米管(CNT)-聚合物纳米复合材料的宏观有效压阻响应的主要机制之一。在这项研究中,使用有限元技术开发了一种计算微力学模型,以捕获在纳米尺度上电子跳跃引起的导电路径的影响,这有助于CNT聚合物纳米复合材料的宏观压阻响应。另外,损伤允许通过机电内聚区在CNT-聚合物界面处发展,从而导致沿施加应变的方向破坏电子跳跃路径。通过宏观有效材料特性和使用基于静电能当量的微力学技术评估的尺度因子,研究了电子跳跃机制和纳米级界面损伤演化对有效压阻响应的影响。观察到,与完美结合的界面相比,纳米级的界面损伤导致更低的规格因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号