首页> 外文期刊>Journal of information science and engineering >Traffic Identification Based on Applications using Statistical Signature Free from Abnormal TCP Behavior
【24h】

Traffic Identification Based on Applications using Statistical Signature Free from Abnormal TCP Behavior

机译:基于使用统计签名的应用程序的流量识别,没有TCP异常行为

获取原文
获取原文并翻译 | 示例

摘要

As network traffic becomes more complex and diverse from the existence of new applications and services, application-based traffic classification is becoming important for the effective use of network resources. To remedy the drawbacks of traditional methods, such as port-based or payload-based traffic classification, traffic classification methods based on the statistical information of a flow have recently been proposed. However, abnormal TCP behaviors, such as a packet retransmission or out-of-order packets, cause inconsistencies in the statistical information of a flow. Furthermore, the analysis results cannot be trusted without resolving the abnormal behaviors. In this paper, we analyze the limitations of traffic classification caused by abnormal TCP behavior, and propose a novel application-based traffic classification method using a statistical signature with resolving abnormal TCP behaviors. The proposed method resolves abnormal TCP behaviors and generates unique signatures for each application using the packet order, direction, and payload size of the first N packets in a flow, and uses them to classify the application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates of over 99%. Furthermore, the method can classify traffic generated by applications that use the same application protocol or are encrypted.
机译:随着新应用程序和服务的出现,网络流量变得越来越复杂和多样化,基于应用程序的流量分类对于有效利用网络资源变得越来越重要。为了弥补传统方法如基于端口或基于有效载荷的流量分类的弊端,最近提出了一种基于流量统计信息的流量分类方法。但是,异常的TCP行为,例如数据包重传或乱序数据包,会导致流的统计信息不一致。此外,如果不解决异常行为,则无法信任分析结果。在本文中,我们分析了由TCP异常行为引起的流量分类的局限性,并提出了一种使用统计签名解决基于TCP行为的基于应用的流量分类新方法。所提出的方法解决了异常的TCP行为,并使用流中前N个数据包的数据包顺序,方向和有效负载大小为每个应用程序生成了唯一的签名,并使用它们对应用程序流量进行分类。评估表明,该方法可以轻松,快速地对应用程序流量进行分类,准确率高达99%以上。此外,该方法可以对由使用相同应用协议或被加密的应用产生的业务进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号