首页> 外文期刊>Journal of information science and engineering >Dual-Discriminability-Analysis Type-2 Fuzzy-Neural-Network Based Speech Classification for Human-Machine Interaction
【24h】

Dual-Discriminability-Analysis Type-2 Fuzzy-Neural-Network Based Speech Classification for Human-Machine Interaction

机译:人机交互的基于双区分分析2型模糊神经网络的语音分类

获取原文
获取原文并翻译 | 示例

摘要

Speech detection and speech recognition are two important classification problems in human-robot interaction. They are easily affected by the noisy environment. To solve this problem, a dual-discriminability-analysis Type-2 fuzzy neural network (DDA2FNN) is proposed. In handing problems with uncertainties such as noisy data, Type-2 fuzzy-systems generally outperform their Type-1 counterparts. Hence, Type-2 fuzzy-sets are adopted in the antecedent parts to model the noisy data. To enhance the "discriminability", a dual-discriminability-analysis (DDA) method is proposed in the consequent parts. The novelty of DDA is its consideration of both linear-discriminant-analysis (LDA) and minimum-classification-error (MCE). The proposed dual-discriminability-analysis Type 2 fuzzy rule includes an LDA-matrix and an MCE-matrix. Compared with other existing fuzzy neural networks, the novelty of the proposed DDA2FNN is its consideration of both uncertainty and discriminability. The effectiveness of the proposed DDA2FNN is demonstrated by two speech classification problems. Experimental results and theoretical analysis indicate that the proposed DDA2FNN performs better than the other fuzzy neural networks.
机译:语音检测和语音识别是人机交互中的两个重要分类问题。它们很容易受到嘈杂环境的影响。为了解决这个问题,提出了一种双判别分析Type-2模糊神经网络(DDA2FNN)。在处理诸如噪声数据之类的不确定性问题时,类型2模糊系统通常要优于类型1的模糊系统。因此,在前面的部分中采用Type-2模糊集来对噪声数据进行建模。为了增强“可识别性”,在随后的部分中提出了双重可识别性分析(DDA)方法。 DDA的新颖之处在于它同时考虑了线性判别分析(LDA)和最小分类误差(MCE)。所提出的双重可辨别分析类型2模糊规则包括LDA矩阵和MCE矩阵。与其他现有的模糊神经网络相比,提出的DDA2FNN的新颖之处在于它兼顾了不确定性和可分辨性。提出的DDA2FNN的有效性通过两个语音分类问题得到了证明。实验结果和理论分析表明,提出的DDA2FNN的性能优于其他模糊神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号