首页> 外文期刊>Journal of information and computational science >QoS Requirement Self-learning Based Dynamic Adaptive Web Service Selection in Ami Environment
【24h】

QoS Requirement Self-learning Based Dynamic Adaptive Web Service Selection in Ami Environment

机译:Ami环境中基于QoS需求自学习的动态自适应Web服务选择

获取原文
获取原文并翻译 | 示例

摘要

Given the rapidly increasing number of available Web services and the different user QoS requirement, selecting a suitable service for each user adaptively is difficulty in Anil environment. In this paper, we propose a backward inference based user QoS requirements self-learning model to learn the users' special preferences by using the service evaluation information and then construct a user's QoS cognitive set by means of learned information. We also put forward a dynamic adaptive service selection algorithm based on the dynamic multi-attribute decision making theory. The algorithm, firstly, can generate users QoS requirement preferences according to the information of candidate services and user's QoS cognitive set. Then it automatic selects a suitable service for user by using the services' history information, service providers' statements values and user QoS requirements. Last., we verify the usability of the model through prototypical implementation and explain its advantage and deficiency.
机译:鉴于可用Web服务的数量迅速增加以及不同的用户QoS要求,在Anil环境中很难为每个用户自适应地选择合适的服务。本文提出了一种基于向后推理的用户QoS需求自学习模型,通过使用服务评估信息来学习用户的特殊偏好,然后利用所学习的信息来构建用户的QoS认知集。基于动态多属性决策理论,提出了一种动态自适应服务选择算法。该算法首先可以根据候选服务的信息和用户的QoS认知集生成用户QoS需求偏好。然后,它将通过使用服务的历史信息,服务提供商的陈述值和用户QoS要求自动为用户选择合适的服务。最后,我们通过原型实现来验证模型的可用性,并解释其优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号