首页> 外文期刊>Journal of information and computational science >NWFNN : A Clustering Algorithm Based on Fuzzy Neural Network with Its Application in Text Mining
【24h】

NWFNN : A Clustering Algorithm Based on Fuzzy Neural Network with Its Application in Text Mining

机译:NWFNN:一种基于模糊神经网络的聚类算法及其在文本挖掘中的应用

获取原文
获取原文并翻译 | 示例

摘要

The limitation of FCM algorithm is applicable to spheroid and the main defect of traditional methods of fuzzy neural network and fuzzy clustering algorithm is to know the number of clustering in advance. A new clustering algorithm NWFNN is presented in the paper. Euclidean distance based on feature weight is used to non-spherical data space. NWFNN algorithm applies average information entropy to find the number of clusters and a dopts a density function algorithm to find the initial cluster centers. NWFNN uses the fuzzy central vectors as the weights of the neuron network. The winner unit in the model is acquired by comparing the membership degree values between neurons. Only two neurons in the network are updated. The weights of the neuron with the largest membership degree values are updated by a larger learning rate, while the weights of the neuron with the second largest membership degree value are updated by a smaller learning rate, and the weights of other neurons are kept invariable. According to the formula of FCC algorithm, both the fuzzy center clustering vectors (weights of neuron network) and the membership degrees are adjusted, and the number of clustering is determined after the neuron network reaches stable, NWFNN algorithm is applied to text mining. Compared with the traditional fuzzy neuron networks, the present model possesses the simpler structure, higher precision and the higher efficiency, and overcomes the defect that the traditional algorithms need to know the number of clustering in advance. An example demonstrates the effectiveness of the present algorithm.
机译:FCM算法的局限性是适用于球体,而模糊神经网络和模糊聚类算法的传统方法的主要缺陷是要事先知道聚类的数量。提出了一种新的聚类算法NWFNN。基于特征权重的欧氏距离用于非球面数据空间。 NWFNN算法应用平均信息熵来找到聚类的数量,并使用密度函数算法来找到初始聚类中心。 NWFNN使用模糊中心向量作为神经元网络的权重。通过比较神经元之间的隶属度值来获取模型中的获胜者单元。网络中只有两个神经元被更新。具有最大隶属度值的神经元的权重以较大的学习率更新,而具有第二隶属度值的神经元的权重以较小的学习率更新,而其他神经元的权重保持不变。根据FCC算法的公式,对模糊中心聚类向量(神经元网络的权重)和隶属度进行调整,并在神经元网络达到稳定后确定聚类次数,将NWFNN算法应用于文本挖掘。与传统的模糊神经元网络相比,该模型结构简单,精度更高,效率更高,克服了传统算法需要事先知道聚类数目的缺点。一个例子说明了本算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号