首页> 外文期刊>Journal of information and computational science >Abnormal Weather Prediction: A New Method Combining Rough Set, BP Neural Network and Temporal Association Rules
【24h】

Abnormal Weather Prediction: A New Method Combining Rough Set, BP Neural Network and Temporal Association Rules

机译:异常天气预报:一种结合粗糙集,BP神经网络和时间关联规则的新方法

获取原文
获取原文并翻译 | 示例

摘要

Abnormal weather alerts and advisories play a significant role in the process of protecting life and property which have been a major part of modern weather forecasting. In this paper a new model was proposed that called RSBP-TAR combined Rough Set with Back propagation Propagation Neural Network to mine some Temporal Association Rules from the past meteorological satellite data, from which we can develop the accuracy of the lowest and highest weather alerts and advisories through the time lag of two cities's temperature change.
机译:异常的天气警报和咨询在保护生命和财产的过程中起着重要作用,这已成为现代天气预报的重要组成部分。本文提出了一种新的模型,称为RSBP-TAR,结合了粗糙集和反向传播传播神经网络,可以从过去的气象卫星数据中挖掘出一些时间关联规则,从而可以开发出最低和最高天气警报的准确性以及通过两个城市的温度变化的时间延迟进行咨询。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号