首页> 外文期刊>Journal of information and computational science >Maneuvering Target Tracking Algorithm Based on Multiple Model Rao-Blackwellised Particle Filter
【24h】

Maneuvering Target Tracking Algorithm Based on Multiple Model Rao-Blackwellised Particle Filter

机译:基于多模型Rao-Blackwellised粒子滤波的机动目标跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

Target tracking is highly nonlinear problem that has been successfully addressed in recent years using particle filtering method. However, the realization of particle filter has a large amount of calculation. In order to improve the computational complexity caused by the augment of model in maneuvering tracking system, Rao-Blackwellised particle filter with better real-time and filtering precision relative to the standard particle filter, is introduced into multiple model particle filter framework. And a novel multiple model Rao-Blackwellised particle filter is proposed in this paper. Due to the dynamic combination of above two algorithms, the real-time and reliability is effective improved. The theoretical analysis and experimental results show the efficiency of the proposed algorithm.
机译:目标跟踪是高度非线性的问题,近年来已使用粒子滤波方法成功解决了这一问题。但是,粒子滤波器的实现需要大量的计算。为了提高机动跟踪系统中模型扩展带来的计算复杂度,将多标准粒子过滤器框架具有比标准粒子过滤器更好的实时性和过滤精度的Rao-Blackwellised粒子过滤器。并提出了一种新型的多模型Rao-Blackwellised粒子滤波器。由于上述两种算法的动态结合,有效地提高了实时性和可靠性。理论分析和实验结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号