首页> 外文期刊>Journal of information and computational science >A Chaotic Characteristics Identification Method for Network Security Situation Time Series
【24h】

A Chaotic Characteristics Identification Method for Network Security Situation Time Series

机译:网络安全状况时间序列的混沌特征识别方法

获取原文
获取原文并翻译 | 示例

摘要

To choose a reasonable prediction model of network security situation, an Identification Method of Chaotic Time Series (IMCTS) used for identifying chaotic characteristics of network security situation time series is proposed. In IMCTS, the C-C method is used for calculating embedding dimension τ and delay time d of time series; the Fast Fourier Transform (FFT) method is used for calculating mean period P of time series; the small data sets method is used for obtaining largest Lyapunov exponent λ_1 of time series, and then λ_1 is used for identifying chaotic characteristics of time series so as to choose a reasonable time series prediction model. To identify chaotic characteristics of time series, network security situation time series obtained from DARPA 1999 Data Set are used for simulation experiments. The experimental results show that IMCTS provides a strong theoretical basis for choosing an effective prediction model of network security situation, and meanwhile holds broad application prospect.
机译:为了选择合理的网络安全态势预测模型,提出了一种用于识别网络安全态势时间序列混沌特征的混沌时间序列识别方法。在IMCTS中,使用CC方法计算时间序列的嵌入维数τ和延迟时间d。快速傅里叶变换(FFT)方法用于计算时间序列的平均周期P;利用小数据集方法获取时间序列的最大李雅普诺夫指数λ_1,然后使用λ_1识别时间序列的混沌特性,从而选择合理的时间序列预测模型。为了确定时间序列的混沌特性,将从DARPA 1999数据集获得的网络安全状况时间序列用于仿真实验。实验结果表明,IMCTS为选择有效的网络安全形势预测模型提供了强有力的理论基础,同时具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号