首页> 外文期刊>Journal of information and computational science >Quantum Particle Swarm Optimization Based Search Space Partition with Application to Continuous Space Optimization
【24h】

Quantum Particle Swarm Optimization Based Search Space Partition with Application to Continuous Space Optimization

机译:基于量子粒子群优化的搜索空间划分及其在连续空间优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

In view of the slowness and the locality of convergence for Particle Swarm Optimization (PSO) in solving complex continuous space optimization problems. Based the idea of wavelet analysis and quantum algorithm, this paper introduces an improved technique called quantum particle swarm optimization based search space partition (SSPQPSO). In this algorithm, the search space partition method is used to increase search accuracy and inhibit premature problem. The positions of particles are encoded by the probability amplitudes of quantum bit. Each quantum bit contains two probability amplitudes, which accelerate the process of searching. Two typical examples indicate that the novel algorithm possesses several advantages such as less chance of being trapped into premature states, higher accuracy and higher stability. As a result, SSPQPSO can be widely applied to many complex continuous space optimization problems which require higher accuracy.
机译:鉴于粒子群优化(PSO)在解决复杂的连续空间优化问题方面的缓慢性和收敛性。基于小波分析和量子算法的思想,本文介绍了一种改进的技术,即基于量子粒子群优化的搜索空间划分(SSPQPSO)。在该算法中,搜索空间划分方法用于提高搜索精度并抑制过早的问题。粒子的位置由量子比特的概率幅度编码。每个量子位包含两个概率幅度,这会加快搜索过程。两个典型的例子表明,该新算法具有以下优点:被困于过早状态的机会更少,准确性更高,稳定性更高。结果,SSPQPSO可以广泛应用于许多需要更高精度的复杂连续空间优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号