首页> 外文期刊>Computational Optimization and Applications >A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization
【24h】

A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization

机译:在分区搜索空间中使用带电粒子进行连续优化的多群PSO

获取原文
获取原文并翻译 | 示例

摘要

Particle swarm optimization (PSO) is characterized by a fast convergence, which can lead the algorithms of this class to stagnate in local optima. In this paper, a variant of the standard PSO algorithm is presented, called PSO-2S, based on several initializations in different zones of the search space, using charged particles. This algorithm uses two kinds of swarms, a main one that gathers the best particles of auxiliary ones, initialized several times. The auxiliary swarms are initialized in different areas, then an electrostatic repulsion heuristic is applied in each area to increase its diversity. We analyse the performance of the proposed approach on a testbed made of unimodal and multimodal test functions with and without coordinate rotation and shift. The Lennard-Jones potential problem is also used. The proposed algorithm is compared to several other PSO algorithms on this benchmark. The obtained results show the efficiency of the proposed algorithm.
机译:粒子群优化(PSO)的特点是收敛速度快,可以使此类算法陷入局部最优状态。在本文中,基于带电荷粒子的搜索空间不同区域中的几次初始化,提出了一种标准PSO算法的变体,称为PSO-2S。该算法使用两种算法,一种是主算法,它收集最佳的辅助算法粒子,并进行了多次初始化。在不同的区域初始化辅助群集,然后在每个区域中应用静电排斥启发法以增加其多样性。我们分析了由单峰和多峰测试函数组成的,带有和不带有坐标旋转和移位的测试平台上所提出方法的性能。 Lennard-Jones势问题也被使用。在该基准测试中,将所提出的算法与其他几种PSO算法进行了比较。所得结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号