首页> 外文期刊>Journal of information and computational science >Identification of English Prepositional Phrases within Business Domain for Machine Translation
【24h】

Identification of English Prepositional Phrases within Business Domain for Machine Translation

机译:机器翻译领域中英语介词短语的识别

获取原文
获取原文并翻译 | 示例

摘要

An MT-oriented system using Conditional Random Fields (CRFs) is presented to identify English Prepositional Phrases (PPs) within business domain. For the purpose of English-Chinese Machine Translation (MT), we, under the guidance of the theory of Syntactic Functional Grammar (SFG), refine PP function chunks into four types instead of the binary attachment. In order to improve the identification of these chunk types, we revise the Penn Treebank tagset with four major changes being made. A small size of 998k English annotated corpus in business domain is semi-automatically built based on our new tagset employing the Maximum Entropy model. Experiments show that our system achieves an accuracy of 88.45%, higher than other reported approaches. The adjustments made in the PP chunk types and POS tagset give rise to 4.11%, 4.25% and 4.15% increase in the precision, recall and F-score respectively.
机译:提出了一种使用条件随机场(CRF)的面向MT的系统,以识别业务领域内的英语介词短语(PP)。出于英汉机器翻译(MT)的目的,我们在语法功能语法(SFG)的理论指导下,将PP功能块精简为四种类型,而不是二进制附件。为了改善对这些块类型的识别,我们对Penn Treebank标签集进行了四个主要更改。基于我们采用最大熵模型的新标签集,半自动构建了业务领域中大小为998k的英语注释语料库。实验表明,我们的系统达到了88.45%的精度,高于其他已报道的方法。对PP块类型和POS标签集进行的调整分别使精度,召回率和F得分分别提高4.11%,4.25%和4.15%。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第15期|4849-4860|共12页
  • 作者单位

    School of Foreign Languages, Dalian University of Technology, Dalian 116023, China;

    School of Foreign Languages, Dalian University of Technology, Dalian 116023, China;

    School of Computer Science and Technology, Dalian University of Technology Dalian 116023, China;

    School of Computer Science and Technology, Dalian University of Technology Dalian 116023, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SFG; POS Tagging; CRFs; PP Chunking;

    机译:SFG;POS标记;CRF;PP分块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号