首页> 外文期刊>Journal of information and computational science >Item Recommendation in Social Tagging Systems Using Tag Network
【24h】

Item Recommendation in Social Tagging Systems Using Tag Network

机译:使用标签网络的社会标签系统中的项目推荐

获取原文
获取原文并翻译 | 示例

摘要

How to profile users and items is a key problem for recommendation in tagging systems. In contrast to tag vector based methods which ignore the semantic relations between tags, we present a novel profiling method based on a weighted tag network model to fully exploit the rich tag relations. Furthermore, by considering the extent of other users' usage of tags, we present a novel NTF-IUF-IIF method to calculate weights for tags, which can seize the user's preference accurately. Instead of a single document of traditional methods, it is the first effort to regard each user as a document collection, which enables the statistics of all items. Then the extent of other users' usage of tags can be counted via the global item information, and then used as a factor for accurate tag weighting. Finally, a Fusion Method (FM) is proposed for measuring similarities between tag networks of users and items to get the recommendation lists. Experimental results on MovieLens and CiteULike datasets validate the effectiveness of our methods.
机译:如何分析用户和项目是标记系统中推荐的关键问题。与忽略标签之间语义关系的基于标签向量的方法相反,我们提出了一种基于加权标签网络模型的新型分析方法,以充分利用丰富的标签关系。此外,通过考虑其他用户使用标签的程度,我们提出了一种新颖的NTF-IUF-IIF方法来计算标签的权重,从而可以准确地抓住用户的偏好。代替传统方法的单个文档,这是将每个用户视为文档集合的第一步,该文档集合使所有项目的统计成为可能。然后,可以通过全局项目信息计算其他用户使用标签的程度,然后将其用作精确标签权重的因素。最后,提出了一种融合方法(FM),用于测量用户和物品标签网络之间的相似度,以获得推荐列表。在MovieLens和CiteULike数据集上的实验结果验证了我们方法的有效性。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第13期|4057-4066|共10页
  • 作者单位

    College of Computer Sciences and Technology, Harbin Institute of Technology, Harbin 150001, China;

    College of Computer Sciences and Technology, Harbin Institute of Technology, Harbin 150001, China;

    College of Computer Sciences and Technology, Harbin Institute of Technology, Harbin 150001, China;

    College of Computer Sciences and Technology, Harbin Institute of Technology, Harbin 150001, China;

    College of Electronic and Information Engineering, Harbin Huade University, Harbin 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social Tagging; Tag Network; Recommendation;

    机译:社交标签;标签网络;建议;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号