首页> 外文期刊>ACM Transactions on Management Information Systems >A Random Walk Model for Item Recommendation in Social Tagging Systems
【24h】

A Random Walk Model for Item Recommendation in Social Tagging Systems

机译:社会标签系统中用于项目推荐的随机游走模型

获取原文
获取原文并翻译 | 示例

摘要

Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users' preferences on an item similarity graph and spreading items' influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation.
机译:社交标签,作为一种新颖的信息组织和发现方法,已在许多Web 2.0应用程序中被广泛采用。用户提供的用于注释各种Web资源或项目的标签提供了一种新型的信息,供推荐系统使用。然而,用户,项目和标签之间的三元交互数据的稀疏性限制了基于标签的推荐算法的性能。在本文中,我们建议通过在三元交互图上应用随机游走来探索用户与项目之间的传递关联,从而解决社会标签中的稀疏性问题。本文中的可传递关联是指长度大于1的任何两个节点之间的链接路径。利用这些可传递关联可以允许对两个实体(例如,用户项,用户-用户和项-项)之间的相关性进行更准确的测量。已经开发了一种类似于PageRank的算法,通过在项目相似度图上分散用户的偏好并在项目相似度图上分布项目的影响来探索这些传递关联。对三个真实数据集的实证评估表明,我们的方法可以有效缓解稀疏性问题并提高项目推荐的质量。

著录项

  • 来源
  • 作者单位

    The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

    The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China and Department of Management Information Systems, The University of Arizona;

    Mclntire School of Commerce, University of Virginia;

    Department of OPIM, University of Pennsylvania;

    The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; random walk; sparsity; social tagging;

    机译:推荐系统;随机漫步稀疏社会标签;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号