首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Content-Based Tag Propagation and Tensor Factorization for Personalized Item Recommendation Based on Social Tagging
【24h】

Content-Based Tag Propagation and Tensor Factorization for Personalized Item Recommendation Based on Social Tagging

机译:基于社会标签的个性化商品推荐基于内容的标签传播和张量分解

获取原文
获取原文并翻译 | 示例

摘要

In this article, a novel method for personalized item recommendation based on social tagging is presented. The proposed approach comprises a content-based tag propagation method to address the sparsity and "cold start" problems, which often occur in social tagging systems and decrease the quality of recommendations. The proposed method exploits (a) the content of items and (b) users' tag assignments through a relevance feedback mechanism in order to automatically identify the optimal number of content-based and conceptually similar items. The relevance degrees between users, tags, and conceptually similar items are calculated in order to ensure accurate tag propagation and consequently to address the issue of "learning tag relevance." Moreover, the ternary relation among users, tags, and items is preserved by performing tag propagation in the form of triplets based on users' personal preferences and "cold start" degree. The latent associations among users, tags, and items are revealed based on a tensor factorization model in order to build personalized item recommendations. In our experiments with real-world social data, we show the superiority of the proposed approach over other state-of-the-art methods, since several problems in social tagging systems are successfully tackled. Finally, we present the recommendation methodology in the multimodal engine of I-SEARCH, where users' interaction capabilities are demonstrated.
机译:本文提出了一种基于社交标签的个性化商品推荐新方法。所提出的方法包括基于内容的标签传播方法,以解决稀疏和“冷启动”问题,这些问题经常出现在社交标签系统中并降低推荐质量。所提出的方法通过相关性反馈机制来利用(a)项目的内容和(b)用户的标签分配,以便自动识别基于内容和概念上相似的项目的最佳数量。计算用户,标签和概念上相似的项目之间的相关度,以确保准确的标签传播,从而解决“学习标签相关性”的问题。而且,通过基于用户的个人喜好和“冷启动”程度以三联形式执行标签传播来保留用户,标签和项目之间的三元关系。基于张量因子分解模型显示用户,标签和项目之间的潜在关联,以便建立个性化的项目建议。在我们对现实社会数据的实验中,由于成功解决了社会标签系统中的几个问题,因此我们证明了所提出方法相对于其他最新方法的优越性。最后,我们在I-SEARCH的多模式引擎中介绍了推荐方法,在此方法中,演示了用户的交互功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号