首页> 外文期刊>Journal of information and computational science >Learning Algorithm and the Cooperation Behavior of Continuous Prisoner's Dilemma Game on Complex Networks
【24h】

Learning Algorithm and the Cooperation Behavior of Continuous Prisoner's Dilemma Game on Complex Networks

机译:复杂网络中连续囚徒困境博弈的学习算法与合作行为

获取原文
获取原文并翻译 | 示例

摘要

The standard evolutionary Prisoner's Dilemma Game (PDG), which is the most widely used model for investigating the evolution of cooperation, does not allow for changeable degrees of cooperation and the players can either cooperate or defect in each time. In this paper, we study Continuous Prisoner's Dilemma Games (CPDG) on complex networks (or Spatial Continuous Prisoner's Dilemma Games (SCPDG)); in which each agent locates on a vertex of the network and interacts with all his neighboring agents by making an investment. Each agent's investment will benefit all its neighbors and incur a cost to the focus agent. The investment which can be varied continuously exhibits variable degrees of cooperation. The cooperative level of the group is characterized by the average investment of the population. Unlike the imitation of the best neighbors learning rule, the probability based imitation learning rule and the Moran process based learning rule that usually used in the standard evolutionary SPDG, we propose a new learning algorithm in the continuous condition. Three parameters to describe the imitation ability of the best neighbors, the memory length of the individual and uncertainty effect of the environment are introduced. We investigate the co-effect of these parameters on the cooperation level of the population on the Barabasi-Albert (BA) scale-free networks, the nearest-neighbor coupled networks and the Newman-Watts (NW) small-world networks. Our results may provide some new conclusion on the study of evolutionary games on networks.
机译:标准的进化囚徒困境游戏(PDG)是调查合作演变的最广泛使用的模型,它不允许变化的合作程度,并且玩家每次都可以合作或失败。在本文中,我们研究了复杂网络上的连续囚徒困境游戏(CPDG)(或空间连续囚徒困境游戏(SCPDG));每个代理商都位于网络的顶点,并通过投资与所有相邻代理商进行互动。每个代理商的投资将使所有邻居受益,并给重点代理商带来成本。可以连续变化的投资表现出不同程度的合作。群体的合作水平以人口的平均投资为特征。与通常在标准进化SPDG中使用的模仿最佳邻居学习规则,基于概率的模仿学习规则和基于Moran过程的学习规则不同,我们在连续条件下提出了一种新的学习算法。引入了三个参数来描述最佳邻居的模仿能力,个人的记忆长度和环境的不确定性影响。我们研究了这些参数对巴拉巴伊-阿尔伯特(BA)无标度网络,最近邻耦合网络和纽曼-瓦特(NW)小世界网络上的人口合作水平的共同影响。我们的结果可能为研究网络进化博弈提供一些新的结论。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第10期|3031-3041|共11页
  • 作者

    Ji Quan; Sen Yang; Xianjia Wang;

  • 作者单位

    Guangdong Electric Power Design Institute, China Energy Engineering Group Co., Ltd Guangzhou 510663, China,Department of Management and Economics, Tianjin University, Tianjin 300072, China;

    Institute of Systems Engineering, Wuhan University, Wuhan 430072, China;

    Institute of Systems Engineering, Wuhan University, Wuhan 430072, China,School of Economics and Management, Wuhan University, Wuhan 430072, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spatial Continuous Prisoner's Dilemma Game; Complex Network; Cooperation;

    机译:空间连续囚徒困境博弈;复杂网络;合作;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号