首页> 外文期刊>Journal of information and computational science >An Improved Algorithm for Gray Image Matching
【24h】

An Improved Algorithm for Gray Image Matching

机译:一种改进的灰度图像匹配算法

获取原文
获取原文并翻译 | 示例

摘要

During the process of analyzing the image matching principle, we find that reducing the size of template images' searching space in reference images and reducing the correlation calculation between template images and sub-images can reduce the total amount of calculation of the matching process. A new matching algorithm is designed for the image matching process. The reference image is preprocessed first; then sample the preprocessed reference image with the normalized gray value as probability density; next the rough matching points will be obtained by selecting proper sets of sub-images and updating threshold dynamically; and lastly the process of fine matching is executed. Least-squares method is used to obtain the stationary point of quadratic curve in the nine points' neighborhood with matching points as center, which is the exact matching point eventually. By this way, the complexity of the new algorithm is reduced. The experimental results show that the new algorithm has certain superiority and practicability.
机译:在分析图像匹配原理的过程中,我们发现减小参考图像中模板图像的搜索空间的大小以及减少模板图像与子图像之间的相关性计算可以减少匹配过程的计算总量。针对图像匹配过程设计了一种新的匹配算法。首先对参考图像进行预处理;然后以归一化灰度值作为概率密度对预处理后的参考图像进行采样。接下来,通过选择适当的子图像集并动态更新阈值来获得粗匹配点。最后执行精细匹配的过程。采用最小二乘法求取以匹配点为中心的九个点附近的二次曲线的固定点,即最终的精确匹配点。通过这种方式,降低了新算法的复杂度。实验结果表明,该算法具有一定的优越性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号