首页> 外文期刊>Journal of information and computational science >An Adaptive Mutated Multi-objective Particle Swarm Optimization with an Entropy-based Density Assessment Scheme
【24h】

An Adaptive Mutated Multi-objective Particle Swarm Optimization with an Entropy-based Density Assessment Scheme

机译:基于熵的密度评估方案的自适应变异多目标粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

In order to solve the problem of premature convergence in MOPSO and attain solutions with good diversity and distribution, a new algorithm has been proposed in this study. The algorithm adopts a new density assessment scheme on the basis of particles' entropy information, which helps to obtain a Pareto set with uniformly distributed solutions. Also an adaptive chaotic mutation operator is designed to avoid premature convergence and help particles explore more efficiently in search space. In addition, the proposed algorithm is validated through comparisons with two existing state-of-the-art multi-objective algorithms using established benchmarks and metrics. Results show that the proposed algorithm shows better distribution performance than the compared algorithms while maintains a good convergence performance.
机译:为了解决MOPSO中过早收敛的问题,并获得具有良好分集和分布的解,提出了一种新的算法。该算法在粒子熵信息的基础上采用了一种新的密度评估方案,有助于获得具有均匀分布解的帕累托集。还设计了自适应混沌突变算子,以避免过早收敛并帮助粒子在搜索空间中更有效地探索。此外,通过使用已建立的基准和指标与两种现有的最新多目标算法进行比较,对提出的算法进行了验证。结果表明,所提算法具有比同类算法更好的分布性能,同时保持了良好的收敛性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号