首页> 外文期刊>Journal of information and computational science >Multiple Degree Reduction of Wang-Ball Curves by Using Dual Basis Polynomials
【24h】

Multiple Degree Reduction of Wang-Ball Curves by Using Dual Basis Polynomials

机译:对偶多项式对Wang-Ball曲线进行多次降阶

获取原文
获取原文并翻译 | 示例

摘要

A new method of multi-degree reduction of Wang-Ball curves with constraints is presented by using basis transformation and the constrained dual basis polynomials, associated with the Jacobi scalar product. Favorable qualities of dual basis polynomials are also given, including the explicit orthogonal representations, and the degree elevation formula. The complexity of the method is O(mn), if the input and output curves are of degree n and m(m < n), respectively. Some numerical examples are also given to show the effectiveness of the algorithm.
机译:提出了一种利用底变换和约束二元多项式与雅可比标量积相关联的带约束的Wang-Ball曲线多度降阶的新方法。还给出了对偶多项式的良好性质,包括显式正交表示和度高公式。如果输入和输出曲线分别为n度和m(m

著录项

  • 来源
  • 作者单位

    College of Mathematics, Hefei University of Technology, Hefei 230009, China,College of Economics, Shanghai University of Economics and Finance, Shanghai 200433, China;

    College of Mathematics, Hefei University of Technology, Hefei 230009, China;

    College of Mathematics, Hefei University of Technology, Hefei 230009, China,College of Computer and Information, Hefei University of Technology, Hefei 280009, China;

    College of Mathematics, Hefei University of Technology, Hefei 230009, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dual basis; wang-ball curves; degree reduction; basis transformation;

    机译:双重基础旺球曲线;降低程度;基础转换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号