首页> 外文期刊>Journal of information and computational science >Thermal Placement Optimization of Stacked Chips Based on Partheno-genetic Algorithm
【24h】

Thermal Placement Optimization of Stacked Chips Based on Partheno-genetic Algorithm

机译:基于单亲遗传算法的堆叠芯片热放置优化

获取原文
获取原文并翻译 | 示例

摘要

In the thermal design of stacked chips, the placement of substrate has a significant effect on temperature field, thus influencing its reliability. The thermal placement optimization of stacked chips is stvidied in this paper. The goal of this work is to decrease the highest temperature and achieve an uniform thermal field distribution. In order to optimize the thermal placement, partheno-genetic algorithm is adopted. The temperature of stacked chips is the evaluation indicator which based on thermal superposition model and heat conduction equation, therefore the fitness function of thermal placement optimization is up to the indicator. In the algorithm, the selected operator of three copies competition can maintain the diversity of the population. And new genetic operators, such as gene transposition, gene translocation, gene inversion, and gene mutation, which are all carried on a chromosome, are adopted. The genetic operators not only guarantee the new generation of individuals to be viable solutions, but also improve the searching capability. According to this work, the chips placement rules which used for directing thermal design of stacked chips are summarized. For the purpose of demonstrating the effective of the obtained optimization program, ANSYS, Finite Element Analysis (FEA), is carried out to assess the thermal field distribution of the optimization placement in stacked chips. The results show that the thermal field distribution of the optimization chips placement is in well accord with the FEA results. It turns out that the chip placement optimization approach proposed in this work is effective in decreasing the highest temperature and achieving uniform thermal field distribution.
机译:在堆叠芯片的热设计中,基板的放置会对温度场产生重大影响,从而影响其可靠性。本文对堆叠芯片的热放置优化进行了研究。这项工作的目标是降低最高温度并实现均匀的热场分布。为了优化热放置,采用单性遗传算法。堆叠芯片的温度是基于热叠加模型和热传导方程的评估指标,因此热贴装优化的适应度函数取决于该指标。在该算法中,三份竞争的选定算子可以维持种群的多样性。并采用了染色体上携带的新的遗传算子,如基因易位,基因易位,基因倒置和基因突变。遗传算子不仅保证新一代个体成为可行的解决方案,而且提高了搜索能力。根据这项工作,总结了用于指导堆叠芯片热设计的芯片放置规则。为了证明所获得的优化程序的有效性,ANSYS进行了有限元分析(FEA),以评估堆叠芯片中优化布局的热场分布。结果表明,优化芯片布置的热场分布与有限元分析结果非常吻合。事实证明,这项工作中提出的芯片放置优化方法可有效降低最高温度并实现均匀的热场分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号