首页> 外文期刊>Journal of information and computational science >Human Detection in Depth Image Sequences Based on CoHOD Features
【24h】

Human Detection in Depth Image Sequences Based on CoHOD Features

机译:基于CoHOD特征的深度图像序列中的人体检测

获取原文
获取原文并翻译 | 示例

摘要

The spatial clues in the new medium of depth image sequences offer the potential opportunities to solve difficult problems in human detection, such as varying illumination, approximate appearance and occlusions. Therefore, object detection based on depth image sequences has attracted much attention in recent years. The key problem of human detection based on depth images is the efficient extraction of discriminating features. Some existing methods have shown efficient performance in human detection in a given scene, such as torque characteristics, geodesic features and histogram features. However, these methods still have some disadvantages in robustness, accuracy and computational complexity because a depth image always contains noise and the human body includes detailed structures. In this paper, we propose a human feature representation method, called CoHOD (Co-occurrence Histograms of Oriented Depths), which combines the advantages of HOG (Histograms of Oriented Gradients) and co-occurrence matrix methods. In the proposed framework, a co-occurrence matrix is used to represent the human body in a depth image, through which the human body ultimately is efficiently and accurately detected. Experiments are conducted to demonstrate the effectiveness of our proposed method.
机译:新的深度图像序列介质中的空间线索为解决人类检测中的难题提供了潜在的机会,例如变化的照明,近似的外观和遮挡。因此,近年来,基于深度图像序列的物体检测引起了广泛的关注。基于深度图像的人体检测的关键问题是有效提取识别特征。一些现有方法在给定场景中的人类检测中已显示出高效的性能,例如扭矩特性,测地线特征和直方图特征。然而,这些方法在鲁棒性,准确性和计算复杂性方面仍存在一些缺点,因为深度图像总是包含噪声并且人体包括详细的结构。在本文中,我们提出了一种人类特征表示方法,称为CoHOD(定向深度共现直方图),该方法结合了HOG(定向梯度直方图)和共现矩阵方法的优点。在提出的框架中,使用共现矩阵在深度图像中表示人体,通过该矩阵最终可以有效,准确地检测人体。进行实验以证明我们提出的方法的有效性。

著录项

  • 来源
    《Journal of information and computational science》 |2014年第12期|4231-4240|共10页
  • 作者单位

    Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China;

    Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China;

    Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China;

    Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Human Detection; Histogram Segmentation; HOG; CoHOD;

    机译:人体检测;直方图分割猪联合会;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号