首页> 外文期刊>Journal of information and computational science >A Novel Iterated Multi-step Prediction Method of Traffic Flow
【24h】

A Novel Iterated Multi-step Prediction Method of Traffic Flow

机译:一种新的交通流量迭代多步预测方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-step prediction of traffic flow is very useful for dynamic navigation systems and intelligent transportation systems. A general iterative multi-step prediction is normally based on an iterative use of some one-step prediction and it usually results in error accumulation. To obtain a better method of iterative multi-step prediction and its availability, firstly based on Kalman filtering model and support vector machine model, a new combination model is designed for one-step prediction; and then a method of iterated multi-step prediction combined with the use of historical similar sequence is presented. The use of historical similar sequence in the method can significantly reduce its error accumulation. Experiment results show that its maximum prediction error growth rate within 12-step predictions (about an hour with 5 minutes as a time-interval) does not exceed 5% for the whole day and its relative error is maintained at less than 10% in peak hours.
机译:交通流量的多步预测对于动态导航系统和智能交通系统非常有用。一般的迭代多步预测通常基于某些一步预测的迭代使用,并且通常会导致错误累积。为了获得更好的迭代多步预测方法及其实用性,首先基于卡尔曼滤波模型和支持向量机模型,设计了一种新的组合模型进行单步预测。然后提出了一种结合历史相似序列的迭代多步预测方法。该方法中使用历史相似序列可以显着减少其错误累积。实验结果表明,它在12步预测中的最大预测误差增长率(大约一个小时,以5分钟为时间间隔)整天不超过5%,并且其相对误差峰值保持在小于10%的水平小时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号