首页> 外文期刊>Journal of information and computational science >Dynamic Hand Gesture Recognition Using Depth Data and Kernel Density Estimation of Fingertip Angle Set
【24h】

Dynamic Hand Gesture Recognition Using Depth Data and Kernel Density Estimation of Fingertip Angle Set

机译:深度数据和指尖角度集的核密度估计的动态手势识别

获取原文
获取原文并翻译 | 示例

摘要

The lack of robustness and real-time ability under complex environment are the two common problems of dynamic hand gesture recognition. This paper presents a fast and stable algorithm based on Kinect depth data and kernel density estimation of fingertip angle set. In Kinect scene, 3D trajectory of dynamic hand gesture is extracted and recognized stably based on depth data and accurate hand gestures. By defining the fingertip angle set of hand shape, the kernel density estimation sequence of fingertip angle set (KDES-FAS) feature is extracted robustly. Finally, the dynamic hand gesture is recognized with the combination of 3D trajectory and hand shape. The extensive experiments demonstrate that the recognition method possesses better real-time performance and robustness for any dynamic hand gestures. The method proposed in this paper has both theory meaning and better value of application.
机译:复杂环境下鲁棒性和实时性的缺乏是动态手势识别的两个普遍问题。本文提出了一种基于Kinect深度数据和指尖角度集的核密度估计的快速稳定的算法。在Kinect场景中,基于深度数据和准确的手势,可以稳定地提取和识别动态手势的3D轨迹。通过定义手形的指尖角度集,可以鲁棒地提取指尖角度集(KDES-FAS)特征的核密度估计序列。最后,结合3D轨迹和手形识别动态手势。大量的实验表明,该识别方法对于任何动态手势都具有更好的实时性能和鲁棒性。本文提出的方法具有理论意义和较好的应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号