首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping
【24h】

Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping

机译:使用动态时间规整的深度数据中的静态和动态手势识别

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses the development of a natural gesture user interface that tracks and recognizes in real time hand gestures based on depth data collected by a Kinect sensor. The interest space corresponding to the hands is first segmented based on the assumption that the hand of the user is the closest object in the scene to the camera. A novel algorithm is proposed to improve the scanning time in order to identify the first pixel on the hand contour within this space. Starting from this pixel, a directional search algorithm allows for the identification of the entire hand contour. The -curvature algorithm is then employed to locate the fingertips over the contour, and dynamic time warping is used to select gesture candidates and also to recognize gestures by comparing an observed gesture with a series of prerecorded reference gestures. The comparison of results with state-of-the-art approaches shows that the proposed system outperforms most of the solutions for the static recognition of sign digits and is similar in terms of performance for the static and dynamic recognition of popular signs and for the sign language alphabet. The solution simultaneously deals with static and dynamic gestures as well as with multiple hands within the interest space. An average recognition rate of 92.4% is achieved over 55 static and dynamic gestures. Two possible applications of this work are discussed and evaluated: one for interpretation of sign digits and gestures for a friendlier human-machine interaction and the other one for the natural control of a software interface.
机译:本文讨论了自然手势用户界面的开发,该界面基于Kinect传感器收集的深度数据实时跟踪和识别手势。首先基于假设用户的手是场景中最接近相机的对象来分割与手相对应的兴趣空间。提出了一种新颖的算法来改善扫描时间,以便识别该空间内手部轮廓上的第一个像素。从该像素开始,方向搜索算法可以识别整个手部轮廓。然后,使用-曲率算法将指尖定位在轮廓上,并使用动态时间扭曲来选择手势候选者,并通过将观察到的手势与一系列预先记录的参考手势进行比较来识别手势。将结果与最新方法进行的比较表明,所提出的系统优于大多数用于静态识别符号数字的解决方案,并且在对流行符号和静态符号的静态和动态识别方面的性能相似语言字母。该解决方案可同时处理静态和动态手势以及兴趣空间内的多只手。 55个静态和动态手势的平均识别率达到92.4%。讨论和评估了这项工作的两种可能的应用:一种用于符号数字和手势的解释,以实现更友好的人机交互,另一种用于自然控制软件界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号