机译:基于RBF神经网络的改进滞回模型的参数辨识。
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;
Piezoelectric Materials; Hysteretic Preisach Model: RBF Neural Network; Interpolation Method;
机译:基于自适应变性混沌免疫算法的模糊最小二乘支持向量机改进了滞回Preisach模型的参数 - 识别研究
机译:基于神经网络的磁滞算子在压电执行器中的Preisach型磁滞识别
机译:基于神经网络的简化向量Preisach模型参数辨识
机译:神经网络识别动态预震模型参数
机译:一种基于耦合有限元/状态空间建模技术的饱和涡轮发电机参数识别的人工神经网络方法。
机译:基于RBF神经网络模型的改进GWO算法优化的HFSWR海杂波抑制方法
机译:基于自适应变量混沌免疫算法的模糊最小二乘支持向量机改进了滞回Preisach模型的参数 - 识别研究