首页> 外文期刊>Journal of information and computational science >Parameters Identification on the Improved Hysteretic Preisach Model Based on the RBF Neural Network
【24h】

Parameters Identification on the Improved Hysteretic Preisach Model Based on the RBF Neural Network

机译:基于RBF神经网络的改进滞回模型的参数辨识。

获取原文
获取原文并翻译 | 示例

摘要

To solve the problem of the hysteretic character of the piezoelectric material in real application, some measurements such as the initial weighted factors of the hysteretic units being calculated based on the theory of Preisach and the FORCs test data, the RBF neural network being introduced to calculate more weighted factors of the hysteretic units, the quadratic polynomial interpolation method being applied to improve the output of the hysteretic model and the Simulink tool being used to establish the simulation model were used to establish an improved hysteretic Preisach model. The parameters identification results of improved hysteretic Preisach model show that the hybrid RBF method is of accuracy according to the real actuator, the mean absolute error is about 1.0 μm and the maximum error is around 2.0 μn. Thus the hysteretic phenomenon is eliminated through the hybrid RBF method, not only the computational time is reduced, but also the accuracy of model is high. So the introduced method of RBF is an effective method for parameters identification of hysteretic Preisach model.
机译:为了解决压电材料在实际应用中的滞后特性问题,基于Preisach理论和FORCs测试数据计算了滞后单元的初始加权因子,并引入了RBF神经网络来进行计算。滞后单元的加权因子更多,采用二次多项式插值法改进滞后模型的输出,并使用Simulink工具建立仿真模型,以建立改进的滞后Preisach模型。改进的滞后Preisach模型的参数辨识结果表明,混合RBF方法具有与实际执行器相当的精度,平均绝对误差约为1.0μm,最大误差约为2.0μn。通过混合RBF方法消除了滞后现象,不仅减少了计算时间,而且模型精度高。因此,所引入的RBF方法是一种有效的滞后Preisach模型参数辨识方法。

著录项

  • 来源
    《Journal of information and computational science》 |2015年第14期|5437-5450|共14页
  • 作者单位

    The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;

    The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;

    The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;

    The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;

    The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China,Hunan University College of Mechanical and Vehicle Engineering, Changsha 410082, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Piezoelectric Materials; Hysteretic Preisach Model: RBF Neural Network; Interpolation Method;

    机译:压电材料;滞后Preisach模型:RBF神经网络;插值法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号