首页> 外文期刊>Journal of information and computational science >Online Fraud Detection Model Based on Social Network Analysis
【24h】

Online Fraud Detection Model Based on Social Network Analysis

机译:基于社交网络分析的在线欺诈检测模型

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of the Internet, the way of our living and thinking has changed. Because of the anonymity and low-cost legal sanctions, e-commerce has been booming on the Internet. Unfortunately, rapid commercial success has made e-commerce sites a lucrative medium for committing fraud. Therefore, we proposed a method that used for fraud detection and prevention on platform. First, we implemented a parallel web crawling agent to collect real users and transaction data. Second, we proposed Reverse Graph and Common Trade Cumulative Graph (CTCG) theory to extract features of common transaction. Third, we extracted the features of graph-level based on the Page-Rank and K-core clustering algorithm and replaced the PageRank values with reasonable TrustRank values, added BadRank values for identifying potential fraud users. Finally, we conducted a series of experiments using the Random Forest and verified the performance of our method by applying it to real transaction cases. In summary, our proposed model is effective in identifying potential fraudulent users on the fraud platform.
机译:随着互联网的飞速发展,我们的生活方式和思维方式发生了变化。由于匿名性和低成本的法律制裁,电子商务一直在Internet上蓬勃发展。不幸的是,迅速的商业成功使电子商务站点成为进行欺诈的有利可图的媒介。因此,我们提出了一种用于平台上欺诈检测和预防的方法。首先,我们实现了一个并行的Web爬网代理来收集实际用户和交易数据。其次,我们提出了反向图和共同交易累积图(CTCG)理论来提取共同交易的特征。第三,我们提取基于Page-Rank和K-core聚类算法的图级特征,并用合理的TrustRank值替换PageRank值,并添加BadRank值以识别潜在的欺诈用户。最后,我们使用随机森林进行了一系列实验,并通过将其应用于实际交易案例来验证了我们方法的性能。总而言之,我们提出的模型可有效识别欺诈平台上的潜在欺诈用户。

著录项

  • 来源
    《Journal of information and computational science》 |2015年第7期|2553-2562|共10页
  • 作者

    Peng Wang; Ji Li; Bigui Ji;

  • 作者单位

    College of Computer Science, Chongqing University, Chongqing 400030, China,Key Laboratory for Dependable Service Computing in Cyber Physics Society, Ministry of Education Chongqing 400030, China;

    College of Computer Science, Chongqing University, Chongqing 400030, China,Key Laboratory for Dependable Service Computing in Cyber Physics Society, Ministry of Education Chongqing 400030, China;

    College of Computer Science, Chongqing University, Chongqing 400030, China,Key Laboratory for Dependable Service Computing in Cyber Physics Society, Ministry of Education Chongqing 400030, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fraudulent Platform; Social Network Analysis; Reverse Graph; CTCG; Random Forest;

    机译:欺诈平台;社交网络分析;反向图;CTCG;随机森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号