首页> 外文期刊>Journal of information and computational science >Iterative Refinement for Cooperative Localization with Maximum Likelihood Estimation
【24h】

Iterative Refinement for Cooperative Localization with Maximum Likelihood Estimation

机译:具有最大似然估计的协作定位的迭代优化

获取原文
获取原文并翻译 | 示例

摘要

Iterative localization is designed to more free nodes when the number of anchor is few. When all localizable nodes are localized in the primitive iterative localization, the reciprocal refinement localization is proposed to refine and improve the node positions. To improve the localization accuracy, the position error of pseudo anchor is transformed to the equivalent range error, the optimal weight strategies are employed to maximum likelihood estimation. The simulations show that proposed the refined positions can achieve the CRLBs of node positions and the performances of iterative refinement are much better than the results without refinement.
机译:当锚点数量很少时,迭代本地化被设计用于更多的自由节点。当所有可本地化的节点都在原始迭代本地化中定位时,建议采用相互精化的本地化来精炼和改善节点位置。为了提高定位精度,将伪锚的位置误差转换为等效范围误差,采用最优权重策略进行最大似然估计。仿真结果表明,提出的改进位置可以达到节点位置的CRLB,迭代改进的性能比不进行改进的结果要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号