首页> 外文期刊>Journal of industrial and management optimization >PREDICTING NON-LIFE INSURER'S INSOLVENCY USING NON-KERNEL FUZZY QUADRATIC SURFACE SUPPORT VECTOR MACHINES
【24h】

PREDICTING NON-LIFE INSURER'S INSOLVENCY USING NON-KERNEL FUZZY QUADRATIC SURFACE SUPPORT VECTOR MACHINES

机译:使用非核模糊二次曲面支持向量机预测非生命保险人的破产

获取原文
获取原文并翻译 | 示例

摘要

Due to the serious consequence caused by insurers' insolvency, how to accurately predict insolvency becomes a very important issue in this area. Many methods have been developed to do this task by using some firm-level financial information. In this paper, we propose a new approach which incorporates several macroeconomic factors in the model and applies feature selection to eliminate the bad effect of some unrelated variables. In this way, we can obtain a more comprehensive and accurate model. More importantly, our method is based on the state-of-the-art non-kernel fuzzy quadratic surface support vector machine (FQSSVM) model which not only performs superiorly in prediction, but also becomes very applicable to the users. Finally, we conduct some numerical experiments based on the real data of non-lifer insurers from USA to show the predictive power and efficiency of our proposed method compared with other benchmark methods. Specifically, in a reasonable computational time, FQSSVM has the most accurate prediction rate and least Type I and Type II errors.
机译:由于保险公司破产造成的严重后果,如何准确地预测破产是该领域非常重要的问题。通过使用一些公司级财务信息,已经开发出许多方法来执行此任务。在本文中,我们提出了一种新方法,该方法将多个宏观经济因素纳入模型,并应用特征选择来消除一些不相关变量的不利影响。这样,我们可以获得更全面,更准确的模型。更重要的是,我们的方法基于最新的非核模糊二次表面支持向量机(FQSSVM)模型,该模型不仅在预测方面表现出色,而且非常适用于用户。最后,我们根据来自美国非寿险公司的真实数据进行了一些数值实验,以证明与其他基准方法相比,我们提出的方法的预测能力和效率。具体而言,在合理的计算时间内,FQSSVM具有最准确的预测率,并且I型和II型错误最少。

著录项

  • 来源
  • 作者单位

    Southwestern Univ Finance & Econ, Sch Business Adm, Chengdu 611130, Sichuan, Peoples R China|Southwestern Univ Finance & Econ, Collaborat Innovat Ctr Financial Secur, Chengdu 611130, Sichuan, Peoples R China;

    Southwestern Univ Finance & Econ, Collaborat Innovat Ctr Financial Secur, Chengdu 611130, Sichuan, Peoples R China|Southwestern Univ Finance & Econ, Sch Insurance, Chengdu 611130, Sichuan, Peoples R China;

    Univ N Carolina, Dept Finance, Charlotte, NC 28223 USA;

    Southwestern Univ Finance & Econ, Sch Business Adm, Chengdu 611130, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-life insurer; predicting insolvency; macroeconomic factors; feature selection; non-kernel FQSSVM;

    机译:非寿险公司;预测破产;宏观经济因素;特征选择;非核心FQSSVM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号