首页> 外文期刊>Journal of industrial and management optimization >SOME CHARACTERIZATIONS OF ROBUST OPTIMAL SOLUTIONS FOR UNCERTAIN FRACTIONAL OPTIMIZATION AND APPLICATIONS
【24h】

SOME CHARACTERIZATIONS OF ROBUST OPTIMAL SOLUTIONS FOR UNCERTAIN FRACTIONAL OPTIMIZATION AND APPLICATIONS

机译:不确定分数阶优化的鲁棒最优解的某些特征及其应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, following the framework of robust optimization, we consider robust optimal solutions for a fractional optimization problem in the face of data uncertainty both in the objective and constraints. To this end, by using the properties of the subdifferential sum formulae, we first introduce some robust basic subdifferential constraint qualifications, and then obtain some completely characterizations of the robust optimal solutions of this uncertain fractional optimization problem. We show that our results encompass as special cases some optimization problems considered in the recent literature. Moreover, as applications, the proposed approach is applied to investigate weakly robust efficient solutions for multi-objective fractional optimization problems in the face of data uncertainty both in the objective and constraints.
机译:在本文中,遵循鲁棒优化的框架,考虑到目标和约束条件下的数据不确定性,我们考虑针对分数优化问题的鲁棒最优解。为此,利用次微分和公式的性质,我们首先介绍了一些鲁棒的基本次微分约束条件,然后完全获得了该不确定分数优化问题的鲁棒最优解的一些特征。我们表明,我们的结果作为特殊情况包括了最近文献中考虑的一些优化问题。此外,在实际应用中,面对目标和约束中的数据不确定性,所提出的方法适用于研究多目标分数优化问题的弱健壮有效解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号